

Emulsion Task Force Update

PPETG
Emulsion Task Force Meeting
May 2-3, 2011

Colin Franco & Roger Hayner Co-Chairman

Emulsion Task Force Update

- Subcommittee's Breakout Session 5-2-11
 - Roger Hayner gave an overview of the ETF
 - Subcommitte Meetings

ETF Review & Update of Purpose of PPETG & ETF

Presented by Colin Franco, RI DOT

- Background:
 - PPETG parent group of “Emulsion Task Force”
 - Idea conceived in February 2008 under guidance of Jim Sorenson, FHWA
 - Identified need for industry expertise and involvement in on going research activities pertaining to asphalt emulsions and finished product systems
 - First meeting in April 2008

ETF Review & Update of Purpose of PPETG & ETF

Task Force Representation

- Members from
 - Industry: AEMA/ARRA/ISSA
 - Academics: CSU/TX A&M/U.Wisc./Cal State/ NC State
 - State DOT's: TX, IA, UT, RI, CA, LA
 - FHWA
 - National Center PP (NCPP)

Subcommittee's

- **Emulsion Testing & Residue Recovery Methods**
 - Arlis Kadrmas – Chairman
 - Paul Morris
 - Laurand Lewandowski
 - Chris Lubbers
 - Roger Hayner
 - Barry Baughman
 - Gayle King
 - Hussain Bahia
 - Ammy Epps Martin

Subcommittee's

- Aggregate, Mix Design, Performance Testing, Cold Mix, Patching Mix and Emulsion Stabilization
 - Gary Hicks – Co-Chairman
 - Jim Moulthrop – Co-Chairman
 - Hussein Bahia
 - Scott Schuler
 - Gayle King
 - Chris Lubbers
 - Laurand Lewandowski
 - Jack Youtcheff
 - Barry Baughman

Subcommittee's

- **Approved Suppliers Certification**

- Roger Hayner – Chairman
- Arlis Kadrmas
- Colin Franco
- Chris Abadie
- Kevin Van Frank
- Jim McGraw
- Asphalt *Institute Rep.*

Subcommittee's

- Inspection & Acceptance

- Colin Franco – Chairman
- Roger Hayner
- Delmar Salomon
- Cris Abadie
- Tom Wood

Subcommittee's

- **Tack Coat, Fog Seals, Rejuvenating Seals Review**
(formed 7-26-10)

- Chris Abadie – Chairman
- Gayle King
- Mike Voth
- Hussein Bahia
- Roger Hayner

Subcommittee's

- **Recycling & Stabilization Emulsions**

(Formed 5-2-11)

- Dragos Andrei
- Steve Cross
- Todd Thomas
- Roger Hayner
- Gary Hicks
- Steve Muncy
- Gerry Reinke
- Blair Barnhardt

ETF Review & Update of Purpose of PPETG & ETF

Original Scope

- Review needs for Preservation Materials Research – Emulsions & Aggregates
- Evaluate existing R&D Roadmap Problem Statements in Area of Emulsions
- Evaluate Work Plans and Review Ongoing Research in PP Emulsion
- Coordinate and Share Activities and Results with Existing Superpave binder/mix/modeling ETG's

ETF Review & Update of Purpose of PPETG & ETF

Original Scope (cont)

- Facilitate adoption of New Findings and Research Results Through Appropriate AASHTO / ASTM Channels
- AEMA / ISSA / ARRA Coordination

ETF Review & Update of Purpose of PPETG & ETF

Original Scope Deliverables

- **Advance the Effort to Develop Performance Based Methods & Specifications for Emulsions**
 - Protocol for Design
 - Protocol for Performance
 - Protocol for Inspection & Acceptance
- **Encourage Adoption of Uniform National Standards**

Residue Recovery & Testing Methods

Update

Presented by Arlis Kadrmas

- Worked off Strawman Specification
- Recovery Method – Method B Standard Method - Thin Film at 6 hours at 60 C. Continue to look at shorter times (3 hrs)
Residue similar to base?
 - Continue to discuss & evaluate alternative methods (DSR, Freeze Dry etc)
- High Float Discussion – Rheological testing to do away with float test, while still identifying properties of the emulsion
- Emulsion Viscosity - How important is field Viscosity? Include in Approved Suppliers Certification

Residue Recovery & Testing Methods

Update

- DSR/MSCR Testing
 - Original DSR Testing to remain the same
 - MSCR Testing (Th and Th-6)
 - Low Temperature
 - 4mm plate (Temp Sweep peak in G")
- PAV Aging
 - Effect of gradation
 - Carbonyl Data on Samples
- Sweep Test Discussion
 - Formulation vs. Field Testing

Residue Recovery & Testing Methods

Update

PLANS

- Emulsion Viscosity to Approved Supplier Certification
- Wyoming Field Emulsion Viscosity Test to AASHTO
- Add T h-6 to MSCR
 - Discussed relevance of 1000 kPa at Th and the Th-12

Residue Recovery & Testing Methods

Update

GOALS

- Pass along information and guidance to NCHRP 9-50 Group
- Suppliers to verify Strawman testing where necessary
 - DSR Stress Sweep (High Temperature)
 - DSR Frequency Sweep (Low Temperature)
 - Emulsion Viscosity comparison
- Revise Strawman
 - Conference calls to discuss changes as soon as possible

Aggregate, Mix Design, Cold Mix, Patching Mix, Emulsion Stabilization and Performance Tests

Presented by Garry Hicks, new Co-chairman

- Limited Past activity
- OBJECTIVES FOR 2011
 - Summarize the current state-of-the-art from literature related to chip seals and slurry surfacing
 - Review:
 - Mix Design processes
 - Performance tests
 - Specification that represent the current best practices concepts
 - Identify areas of needed research to improve the recommended specifications

Aggregate, Mix Design, Cold Mix, Patching Mix, Emulsion Stabilization and Performance Tests

Plans for 2011

- Finalize the membership of the group
- Clarify the subgroup activities
 - Chip Seals
 - Slurry Surfacing
 - Emulsion Mixes
- Develop a work plan for the group
- Identify clear deliverables

Approved Suppliers Certification

Presented by Roger Hayner

- Submitted to ASSHTO for ballot
- Comments:
 - Test within 48 hours of taking sample
 - Agency & Supplier must have QC plan in place to ship
 - Test tolerances not to be included. ETF will develop in future.
 - ASSHTO Accreditation – up to individual states
 - Ballot to be submitted this fall.

Inspection & Acceptance

Presented by Colin Franco, RI DOT

Quality Assurance

- Agencies write specification to describe what they want
- Contractor meet Specification
- Contractor QC Testing – Ensure process is in compliance
- Independent Assurance
- State test to verify they receiving Product they want.

Plans:

- Test Methods: 6 methods to be reviewed and submitted by end of month.

Tack Coat, Fog Seals, Rejuvinating Seals Review

Presented by Michael Voth, FHWA Federal Lands

Issues:

- Test Methods
 - Standardization of Bond Strength Test (simple shear and others) through AASHTO / ASTM
 - Need to research and define emulsion residue properties that affect bond performance
- Procurement Specifications
 - Pre-qualification of products
 - Uniformity of specifications across regions/states
 - Paying for tack: incidental or separate pay item?
 - Proprietary products: balancing innovation and the need for competition

Tack Coat, Fog Seals, Rejuvinating Seals Review

Issues:

- Construction
 - Application Rates
 - Road surface type (new, old, milled)
 - Thickness of overlay
 - Type of mix
 - Properties of tack material
 - Cost-benefit: need for bond on “thinner” vs. “thicker” overlays
 - Less than 1” – critical
 - Greater than 1” - important

Tack Coat, Fog Seals, Rejuvinating Seals Review

Goals - Short Term

Goal: Data Gathering – Develop a concise state of practice

Plans – Short Term

Plans:

- Review Louisiana/NCHRP study, including state survey
- Ask for survey updates via AASHTO list-serve (which states are actively pursuing)
- Review research and implementation by Florida, Virginia, and others

Tack Coat, Fog Seals, Rejuvinating Seals Review

Goals - Short Term

Goal: Support development of draft AASHTO test method(s) for bond strength

Plans – Short Term

Plans:

- Review Methods developed by NCAT , Florida, Road Science and others entities
- Promote/Assist with the write-up of a draft method

Tack Coat, Fog Seals, Rejuvinating Seals Review

Goals - Long Term

Goal: Address procurement and specification issues

Goal: Address construction issues

Plans – Long Term

Plans:

- Leverage information from data gathering effort
- Prioritize issues
- As applicable, promote best practice
- As applicable, create pool fund study

Tack Coat, Fog Seals, Rejuvinating Seals Review

Goals - Long Term

Goal: Promote/Lead research to define performance related tack coat residue properties (and how to measure)

Plans – Long Term

Plans:

- Pooled fund study
- NCHRP study
- Other sources

Recycling & Stabilization Emulsions

Presented by Dr. Steve Cross

- Scope: Use of Emulsions in Recycling and Stabilization
- Committee needs work Plan & Goal to make progress
- Need to communicate between meetings
- Need to stimulate our agencies & companies to support research
- Need to get support for funded support
- Challenge to Chairman & Committee

Review of Chip Seal Research at NCSU

Presented by Dr. Richard Kim, NC State University

PP Goals At NCSU

- Develop & introduce more advance and performance based test and analysis methods to specification, design, and construction of pavement preservation treatments (PPT)
- Improve the performance of PPT by refining current and development new materials and construction techniques
- Extend the application of PPT to higher volume roads

Review of Chip Seal Research at NCSU

Pavement Preservation Projects at NCSU

Completed:

- Optimizing Gradation for Surface Treatments (HWY-2004-04)-**Aggregate**
- Qualifying the Benefits of Improved Rolling of Chip Seals (HWY-2006-06)-**Rolling**
- Performance Based Analysis of Polymer Modified Emulsions in Bituminous Surface Treatment (HWY-2007-06)-**Emulsion**
- Development of a New Chip Design Method (HWY-2009-01)
Performance Related Mix Design

Review of Chip Seal Research at NCSU

Pavement Preservation Projects at NCSU

Ongoing:

- Development of a field Testing System for Asphalt Surface Treatment (HWY-2009-01) **Field QC Test**
- Fog Seal Effectiveness for Bitumen Surface Treatments (HWY-2010-02)-**Fog Seal**
- Extending the Use of Chip Seal to High Volume Roads by Using Polymer Modified Emulsions and Optimize Construction Procedures (HWY-2011-03)-**High Volume Application**

Test Methods Developed at NCSU

Test	Location	Performance Properties
MMLS3 Test	Lab	Aggregate retention, Bleeding
Laser Profiling Test	Lab, Field	Surface texture, Aggregate embedment depth
Surface Digital Imaging Test	Lab, Field	Bleeding evaluation
Crosssectional Digital Imaging Test	Lab	Surface texture, Aggregate embedment depth
Modified Sweep Test	Lab	Aggregate retention

Key Implementation Points

Aggregate

- Importance of uniform gradation (PUC as the specification)
- Fine content less than 1.5%

Emulsion

- Use of polymer modified emulsion strongly recommended
 - Excellent aggregate retention, bleeding, rutting, and low temperature performance of polymer-modified chip seals
- LCCA shows PME to be cost effective on condition that the service life of the PME is two years longer than that of an unmodified chip seal.

Key Implementation Points – Cont'd

Rolling

- Pneumatic tire roller and combination roller recommended
- Optimal number of rolling coverage of three
- No rolling required for the bottom layer of triple seal
- Recommended Rolling Protocols:
 - Two roller case: Two combination rollers side-by-side
 - Three roller case: Two pneumatic tire rollers side-by-side followed by one combination roller

Key Implementation Points – Cont'd

Mix Design

- AAR from the modified board test (305 mm by 508 mm board) – minimum three replicates
 - Traffic whip off factor
 - Wet aggregate
- Laser profiler to determine EAR using the 50% initial embedment depth
 - Aggregate absorption
 - Absorption into existing pavement surface

Update on NCHRP 09-50 Project “Performance Specification for Binders in Chipseals”

- Emulsion Task Force wants to be involved
- Waiting on contract to be awarded
- More information to come

A Brief Summary of the Results from NCHRP 14-17 “Manual for Emulsion-Based Chip Seals for Pavement Preservation”

Presented by Dr. Scott Schuler, Colorado

Objective: Replacing ‘Art’ with Science

- Turning Traffic Loose/Sweeping
- Surface Texture
- Surface Resistance
- Correct Emulsion on Job?

A Brief Summary of the Results from NCHRP 14-17 “Manual for Emulsion-Based Chip Seals for Pavement Preservation”

Conclusions:

- The amount of water remaining in the chip seal (emulsion, chips, substrate) seems to have an effect on chip retention
- The modified Sweep Test may provide a means to Determine What Moisture Content is Appropriate Before Opening to Traffic/Sweeping
- Significantly higher chip loss was measured for test specimens fabricated with dry aggregate compared with saturated surface dry aggregates.

A Brief Summary of the Results from NCHRP 14-17 “Manual for Emulsion-Based Chip Seals for Pavement Preservation”

Conclusions:

- Simple, Practical, Quantitative Methods were developed for:
 - Estimating When Traffic/Broom Ready
 - Embedment Depth
 - Surface Softness
 - Emulsion Viscosity
 - Surface Texture

Fog Seals Laboratory & Field Performance

Presented by Todd Shields, INDOT & Adam Redman

- Research Objectives:
 - Conduct and Evaluate a field study to determine cosmetic and performance characteristics of a fog seal
 - Visual Appearance
 - Aggregate Retention
 - Compare and Evaluate three emulsions used for the fog seal process

Research is Ongoing

- Still collecting and analyzing photographs
- Must further investigate imaging procedures for fog seal
 - Changed from initial 5 x 7 photographs
 - Currently evaluating 2 x 2 specific section
- Emulsion residue coverage on the chip seal might differ after a few months, a year, three years
- Initial surface wear may be complete
 - Evaluate wear in the creases and crevices

Conclusions

- Visually it appears the fog seal is wearing off when you drive the roadway
- Imaging demonstrates the fog seal is in-place on the project, but worn off the surface only
 - “Caulking Effect”
- Emulsion residue properties are very similar

Update on Cal Poly Recycling Center

Presented by Dr. Steve Cross

PRRC Mission:

- ▶ To advance pavement recycling and reclaiming
- ▶ To provide agencies and industry with the knowledge and tools needed to effectively use pavement recycling and reclaiming strategies

PRRC Initiatives

- ▶ **Education and Outreach**
- ▶ **Innovation and Research**
- ▶ **Sustainable Pavements Toolbox**

Visit us @

www.PRRCenter.org

- ▶ News, information, help desk, etc.
- ▶ Register for training courses
- ▶ Join the Founders Circle

For more information please contact:

Dragos Andrei, Ph.D., P.E., Technical Director
909.979.6650 | dandrei@prrcenter.org

AASHTO T2 Submittal Status

Presented by Roger Hayner

- **Four Documents submitted to AASHTO T2 Section for Consideration in 2010**
 - “Standard Practice for Certifying Suppliers of Emulsified Asphalt”
 - “Recovering Residue from Emulsified Asphalt using Low Temperature Evaporative Techniques”
 - “Determining Asphalt Binder Bond Strength by Means of the Bitumen Bond Strength Test (BBS)”
 - “Performance-Graded Asphalt Binder for Surface Treatments (Surface PG Spec)”

AASHTO T2 Submittal Status

Standard Practice for Certifying Suppliers of Emulsified Asphalt “AASHTO PPXX”

- **10 Ballots Affirmative, 3 ballots not returned**
- **Required Supplier laboratories to test RS-2 samples within 48 hours, originally required Agency**
- **Requested that Section 11.1 be revised that a “Supplier must have a QCP in place prior to shipping”**
- **Requested that test tolerances not be included in this initial version but rather the ETF will develop for future**
- **AASHTO Accreditation requirement may be relaxed by State Agency**
- **Concurrent Ballot to be submitted this fall**

AASHTO T2 Submittal Status

Recovering Residue from Emulsified Asphalt Using Low Temperature Evaporative Techniques “AASHTO TPXX”

- Eight Affirmative Ballots, 2 Negative, 3 not returned
- Motion for ETF to consider negative comments from GA and KY and include them in ballot
- Inadequate info on procedures of Methods A and B and questioned the need for Method A
- Concurrent Ballot this fall.

AASHTO T2 Submittal Status

Determining the Asphalt Binder Bond Strength by Means of the Bitumen Bond Strength Test “AASHTO TPXX”

- 9 Affirmative Ballots, 1 Negative, 2 not returned
- Colin Franco and Andrew Hanz defended need and test method
- Tennessee submitted several editorial changes regarding their negative and question of readiness
- Modifications by ETF to be presented as a concurrent ballot later in 2011.

AASHTO T2 Submittal Status

Surface Graded Emulsified Asphalt and Cationic Emulsified Asphalt “AASHTO MPXX”

- 9 Affirmative Ballots, 1 Negative, 3 not returned
- Questioned if Performance Grading of Emulsions and if necessary in light of pending research 09-50
- Opportunity for conflict with future research
- Tabled Ballot until 09-50 project completed

Emulsion Applications Research Needs Survey Update

Presented by Andrew Hanz, UW Madison & Colin Frano, RIDOT

- Outline
 - Previous Results
 - Intent of New Survey
 - Summary of Detailed Responses
 - Common distress Types
 - Failure Modes
 - Testing Needed

Additional Comments

- **Material Properties – *Current Focus of ETF***
 - Aggregate (Gradation, Wear, Micro Deval)
 - Emulsion – Performance properties, adhesion/cohesion, viscosity
- **Construction**
 - Surface preparation and uniform application rate
- **Current Specifications**
 - References to Nevada DOT chip seal specifications and MTO material requirements are made.

Modes of Failure and Mechanisms – Tack Coats

Treatment	Failure Mode	Materials Related	Design or Construction Related
Tack Coat	Slippage	Bond Strength	Application Rate Low Residue
	Delamination	Bond Strength Cohesive Strength of Residue	Application Rate Contamination

Modes of Failure and Mechanisms – Chip Seals

Treatment	Failure Mode	Materials Related	Design or Construction Related
Chip Seal	Chip Loss	Emulsion Performance Adhesion	Aggregate Quality Premature Opening Application Rate
	Bleeding	Emulsion Performance Turning Movements	Application Rate Gradation Traffic Volume

For both treatments design/construction guidance needed to reduce failures.

Modes of Failure - Microsurfacing

- Distresses
 - Rutting/Shoving, Cracking, Ravelling, Flushing, Delamination
- Materials Related Failures
 - Emulsion Performance, Mix Performance
- Design/Construction
 - Mix Design, Surface Prep, Poor Placement
 - Majority of Performance Controlled by Mix Design

Conclusions

- Current ETF activities are working to provide test methods to performance of materials, particularly for chip seals and tack coats.
- Opportunity exists to provide further guidance:
 - Mix Design Criteria and Limits
 - Construction Guidelines
- Survey indicates these contribute significantly to failures.

Discussion Points

- Format of Survey
 - What worked?
 - Quality of Responses
- Next Steps
 - Reporting and interpretation. Draft submitted in need of revision.
 - Application of results to ETF Activities.

ARC Project Emulsion Update:

Improvement of Emulsions Characterization and Mixture Design for Cold Bitumen Applications

Presented by Andrew Hanz

- Overview
 - Testing Frame work – Based ETF Input
 - “Non-Standard” Test Methods and Typical Results
 - Emulsion Viscosity - Rotational Viscosity
 - BBS Test on Emulsions & Residues
 - High Temperature Stress Sweep
 - Elastic Recovery in the DSR – To be tabled

Strawman Specification - Emulsions

Engineering Property	Test	Parameter(s) Measured
Sprayability and Potential for Drain-Out	Brookfield Rotational Viscometer	<ol style="list-style-type: none">1. Viscosity at spraying and surface temperatures.2. Effect of Shear Rate.
<u>Resistance to Early Raveling</u>	Bitumen Bond Strength (BBS) Test	<ol style="list-style-type: none">1. Bond Strength at a Given Curing Time

Emulsion BBS Testing Challenges

- Curing Time vs. Moisture Loss
 - Setting equal curing time was not appropriate for High Float Emulsions.
 - Consider comparing materials at equal moisture loss.
- Establishing Precision and Bias for emulsions.
 - Material Types and Involvement of other labs.

Strawman Specification – Emulsion Residue

Engineering Property	Test	Parameter(s) Measured
<u>Resistance to Bleeding</u>	DSR: High Temperature	<ol style="list-style-type: none">1. G^* of the emulsion residue.2. <u>Stress Sweep.</u>
<u>Resistance to Raveling</u>	BBS Test: Inter. Temp.	<ol style="list-style-type: none">1. Bond Strength of residue.2. Moisture Damage.
<u>Elasticity</u>	DSR: Inter. Temp.	<ol style="list-style-type: none">1. % Recovery
Resistance to Damage	DSR: Inter. Temp.	<ol style="list-style-type: none">1. Strain Tolerance (LAS Test)2. Effect of Aging
Resistance to LT Ravelling	DSR: Estimate Low Temp Properties.	<ol style="list-style-type: none">1. Estimate $S(t)$ and $m(t)$2. Effect of Aging

Research Challenges and Next Steps

- Establishing Precision and Bias Statement for AASHTO Standard
 - Material Selection
 - Involvement of Other Laboratories
- Investigate Moisture Conditioning
 - Temperature and Time.
- Relationship to performance for emulsion residues.
 - Do differences in bond strength and bond strength ratio have a significant impact on performance?

Resources – BBS Test

AASHTO Standard – Approved by SCOM

Standard Method of Test for

**Determining Asphalt Binder Bond Strength by Means of the
Bitumen Bond Strength (BBS) Test**

AASHTO Designation: TP-91-11

Training Materials

- Video: BBS for Evaluation of Emulsions (*In Progress*)
- Video: BBS for Evaluation of Emulsion Residues (*Post to web pending*)
- More information at: www.uwmarc.org

Conclusions

- Tools are available to evaluate emulsions and emulsion residues:
 - Emulsions: Brookfield and BBS
 - Residues: BBS and DSR
- Research Challenges
 - Performance thresholds: Define properties of a “good” emulsion.
 - Proper residue recovery and aging conditions.
 - Refine testing procedures.

Submission of Standard Test Methods

- Complete
 - BBS Test for Emulsions and Binders (TP-91)
- Potential
 - Evaluation of Emulsion Viscosity using the Brookfield RV.

Use of 4mm Plate-Plate DSR Geometry to Determine Low Temperature PG Grade of Recovered Binder

Presented by Gerry Reinke

Work Based on WRI Research

- “A new technique for measuring low-temperature properties of asphalt binders with small amounts of material” presented at TRB 2010
- “New Low-Temperature Performance Grading Method Using 4-mm Parallel Plates on a Dynamic Shear Rheometer” presented at TRB 2011

Use of 4mm Plate-Plate DSR Geometry to Determine Low Temperature PG Grade of Recovered Binder

PROCEDURES:

- 1- Master Curve
- 2- Glass Transition G”

Review Both Procedures and Data

Low Temperature Test on Emulsion Residue Recovered at 60 C Using DSR Compared to Base Asphalt Results

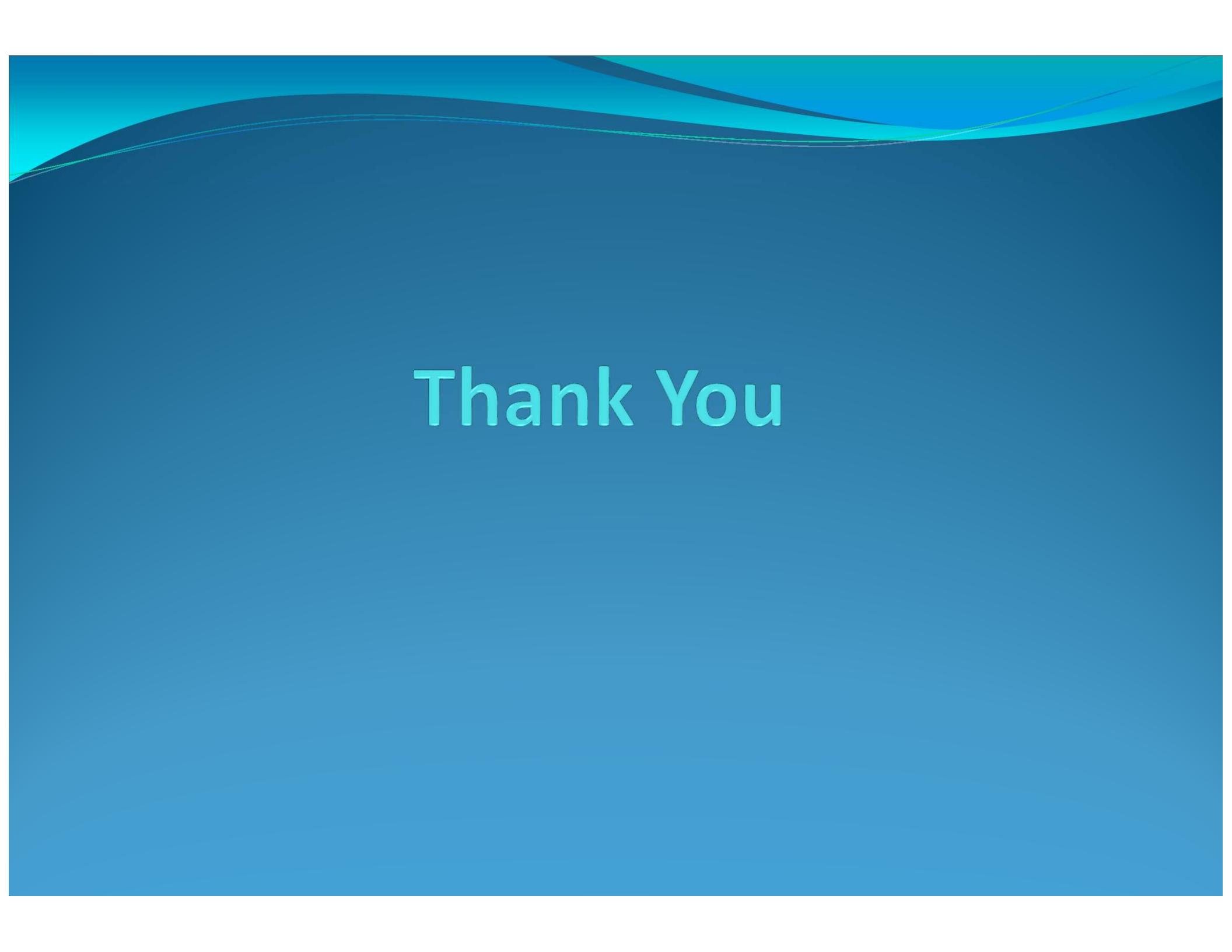
Strawman Specification Review

Presented by Arlis Kadrmas

Strawman Specification for Chip Seal Emulsified Asphalt - Draft Revision August 2010			
Purpose	Test	Conditions	Report
Tests on Emulsified Asphalt			
Residue Recovery	Low Temperature Evaporation - AASHTO XXXX - Method B	6 hours @ 60°C	% Residue
Emulsion Viscosity - Production	Brookfield Viscosity	50°C & 80°C? - Shear Rate TBD	Viscosity for Placement
Emulsion Viscosity - Field Acceptance	Wyoming	Temperature - as received	Viscosity for Placement
Tests on Residue from Low Temperature Evaporation			
High Temperature	DSR	52, 58, & 64°C	G*, G*/sin delta, phase angle
		Th and Th-12°C @ 1.0,3.2&10kPa	%Recovery and Jnr
	DSR - MSCR		
Low Temperature	DSR - Stress Sweep	Th	Sweep Data
	DSR - Frequency Sweep	5°C & 10°C	Sweep Data
Tests on Residue from PAV Aged Material (Optional)			
Aging - Life Cycle Evaluation	UW Procedure for PAV - Frequency Sweep	5°C & 10°C	Sweep Data
Procedures Under Review for Chip Retention			
Sweep Test	Modified ASTM D7000	35°C or Placement °C & humidity	% Loss
Bitumen Bond Strength	UW Procedure	35°C & 30% H	Pull off tensile strength
Linear Amp. Sweep Test	Developing Procedure	19°C, Residue & PAV aged Residue	Cycles for failure at a given strain

ETF ACTION ITEMS

1. Subcommittees


- Work Plans for 2011 Development
- Review Goals & Change for Group
- Develop Timelines
- Assignment/Resposibilites/Task for Group
- Submit by June 1, 2011

2. Tack Coats

- Gather & Review Current State of the Art
- Specifications / Survey Agencies Uses & Products
- Capability of Testing within Group
- Invite Dr. Mohommed to Present Next Meeting
- Tack Coats – Shear vs. Tension

ETF ACTION ITEMS

3. Data Sharing
 - Improve Utilization of NCPP Website for ETF Data including Subcommittee's Reports/Work Product
 - Confirm Past Information and make it readily available
4. Review of NCHRP 14-17 Methods for Presentation to AASHTO – Will be on NCPP Website for review
5. Follow-up on Pooled Fund Efforts?
6. Update Strawman Specification Draft (Completed)
7. Revisions for Current AASHTO Submittals, as per T2 Request for fall Ballot

The background of the slide features a stylized, abstract design. At the top, there are three wavy lines in varying shades of blue and teal, creating a sense of depth and motion. Below this, the background transitions into a solid, medium-toned blue gradient that covers the majority of the slide.

Thank You