

COLD IN-PLACE RECYCLING

Southeast Pavement Preservation Partnership

Stephen Damp, P.Eng. Senior Vice President, The Miller Group

Thursday, May 8, 2008

Presentation Overview

- Definition of Cold In-Place Recycling (CIR)
- Advantages of CIR
- Candidate selection criteria
- Pavement analysis
- Sample tender forms and specifications
- Construction

Performance of CIR

Definition of CIR

CIR is a component of the overall pavement structure which is produced by mining the existing asphalt pavement layers to create a new pavement layer.

Definition of CIR

- From a Pavement Preservation perspective, CIR is not designed to enhance the structural capacity of the pavement

- CIR is predominantly (preferred 80 -100%) working in the existing asphalt pavement structure. Essentially recycling asphalt coated particles.

Three Unit CIR Train

Three Unit CIR Train

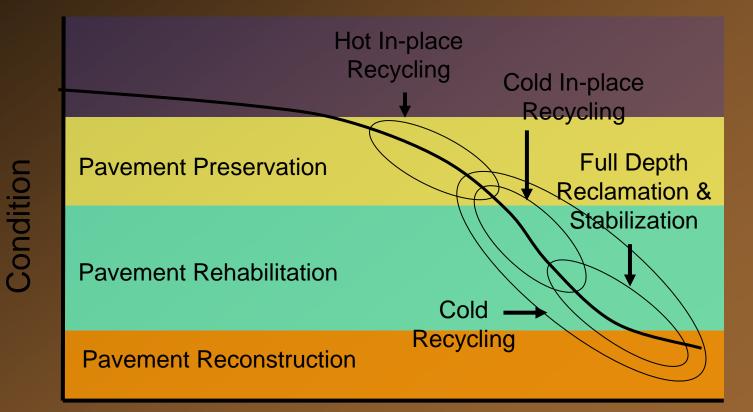
THE MILLER GROUP

Two Unit CIR Train

Single Unit CIR Train

Single Unit CIR Train

Advantages of CIR


- In order to be useful it must:
 - Be cost effective
 - Produce a new pavement that will perform under future traffic conditions
 - It also provides:
 - Convenient Construction
 - Environmentally Beneficial Construction

Engineering – Condition Curve

Time

Candidate Selection Criteria

- Existing pavement's structural capacity
- Underlying pavement bearing capacity
- Material quality
- Longitudinal and transverse profile

Pavement Analysis

 A complete pavement analysis organized by the owner typically includes consultation from the owner agency's staff, contractors and consulting engineers to perform a: – Preliminary visual inspection

Coring and laboratory analysis of existing materials

- Structural assessment

Pavement Analysis – Preliminary Visual Inspection

- Construction limits
- Structural adequacy level
- Longitudinal and transverse profile
- Historical review of in-place materials
- Constructability
- Traffic loading
- Cost effectiveness

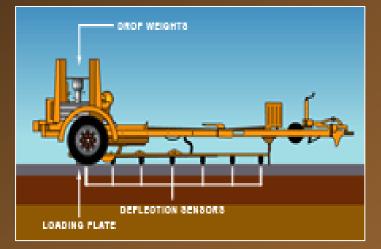
Candidate Selection Criteria - Visual

Candidate Selection Criteria - Visual

Candidate Selection Criteria - Visual

Coring and Lab Analysis

- Depths of pavement layers
- Extracted Asphalt cement
 - Content
 - Penetration
- Recycled Asphalt Pavement (RAP) aggregate
 - Extracted gradation
 - Physical properties



Structural Assessment

GROUP

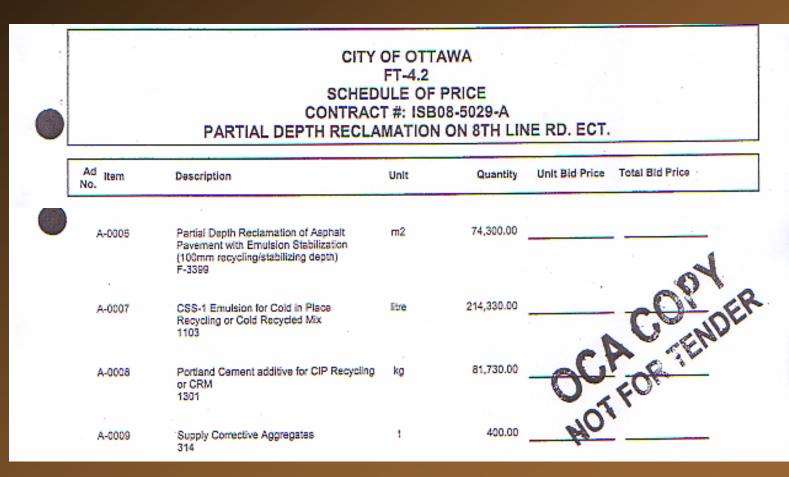
- Load bearing capacity tests
- Characteristics of supporting pavement layers
- Falling Weight Defelctometer (FWD)
- Dynamic Cone Penetrometer (DCP)

 Governing document is Ontario Provincial Standard Specification for CIR (OPSS 333)

<u>https://www.raqsb.mto.gov.on.ca/techp</u> <u>ubs/ops.nsf/OPSHomepage</u>

Ministry of Transportation Ontario

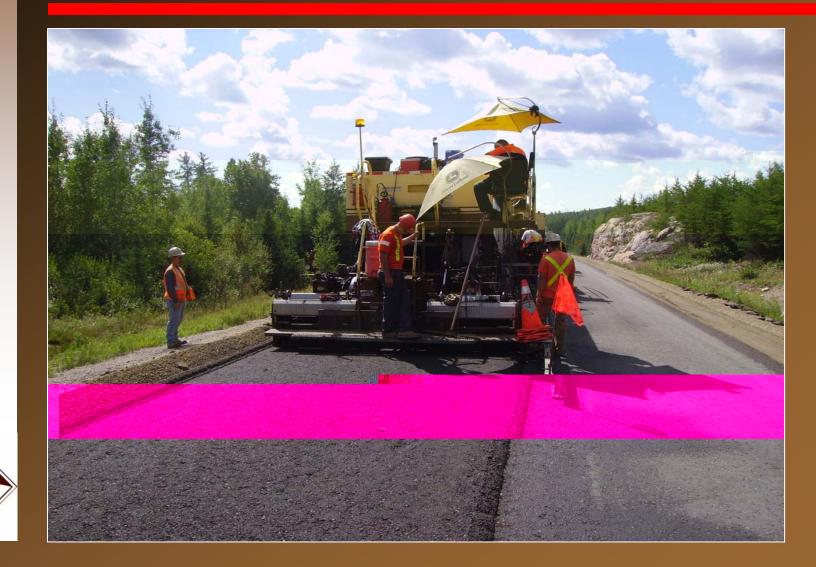
7	0313-1374	SP	Superpave 12.5 FC1	t	17,211	
8	0313-1376	SP	Superpave 19.0	t	17,895	
. 9	0313-1380	SP	Tack Coat	m2 (P)	234,670	
10	0314-0071	SP	Granular A	t	16,363	
11	0314-0130	SP	Granular B, Type I	t	6,696	
12	0333-0010	SP	Cold In-Place Recycled Mix	m2 (P)	107,802	



County of Northumberland

Tender 16-08

ITEM NO.	SPEC. NO.	DESCRIPTION	UNIT	QUANTITY	UNIT PRICE	TOTAL	
ITEM NO. 3 - County Rd. 28 - 800 m south of 6th Line to 500 m south of 7th Line							
3.1	310, SP	Grinding	Sq. m	480	\$	S	
3.2	333, SP	Cold-in place Recycling Mix	Sq. m	16,000	\$	s	
3.3	310, 532, SP	Hot Mix HL8	Tonnes	2,000	S	S	
3.4	310, 532, SP	Hot Mix HL3	Tonnes	1,800	s	s	
3.5	314, SP	Granular 'A' – on shoulder	Tonnes	4,400	\$	\$	
3.6	543, SP	Traffic Control	LS	1	s	\$	



Construction

Construction

Construction

Post Construction

Post Construction

	LElev.	RElev.						
Interval (m)	IRI (m/km)	IRI (m/km	n)			IRI	on CIP bef	ore
0 to 500	1.71	1.6	67				nulating a gr	
500 to 1,000	1.54	< <u>↓ 1.</u>	36				s at approx	
1,000 to 1,500	1.55	1.5	59					
1,500 to 2,000	1.79	1	.5					
2,000 to 2,500	1.78	1.4	41					
2,500 to 3,000	1.57	1.3	39		04			
3,000 to 3,500	1.49	1	.3		~		mprovement	
3,500 to 3,646	1.91	1.8	85				or indicates t	hrough
					softv	vare	Э.	
Roughness Range	Percent of Pavement	Percent of Pavement						
(m/km)	Before Grinding (%)	After Grinding (%)			Gr	rindi	ng simulation	results
Above 1.894	5.73	0					Max IRI	Max IRI
1.894 to 1.736	14.39	0			tion		Before Grinding	After Grinding
1.736 to 1.578	27.11	0			cation (m)		Grinding	Ginding
1.578 to 1.420	45.8	0					(m/km)	(m/km)
1.420 to 1.263	6.97	0						
1.263 to 1.105	0	15.95			to 364		1.668	1.022
1.105 to 0.947	0	66.81	P	rofi	logra	ph	Approx 780	Approx 435
0.947 to 0.789	0	17.24						

Post Construction

ProVAL Report - Hwy 23

COLD IN PLACE PROFILE NB

Analysis - Ride Statistics at Intervals

Channel Title	IRI (m/km)	AVG
LEIev.	1.668	1.564
RElev.	1.460	PI = 740

Analysis - Ride Statistics at Intervals

Interval (m)	IRI (m/km)	IRI (m/km)
		1.6 7 7)

ProVAL Report - HWY 23

SP12.5 FC1

ONE LIFT PAVING ON CIP

HIGHWAY23-NB- 0.0 to 3500.0

Channel Title	IRI (m/km)	AVG
LElev.	0.87	0.855
RElev.	0.84	PI=350

Analysis - Ride Statistics at Intervals


	LElev.	RElev.
Interval (m)	IRI (m/km)	IRI (m/km)

Performance of CIR – Reflective Cracking

Performance of CIR – Reflective Cracking

CIR 5 Years Later

Cold in Place Recycling

CIR Pavement Preservation Project – 20,000 AADT

COLD IN-PLACE RECYCLING

Southeast Pavement Preservation Partnership

Stephen Damp, P.Eng. Senior Vice President, The Miller Group

Thursday, May 8, 2008