Cost-effectiveness and Performance of Recycling

Webinar In-Place Recycling Workshop Earth Day April 22, 2010

Sohila Bemanian, PE Parsons Transportation Group

Outline

>Why recycle?

- ➢Sustainable
- Cost-effective
- >Long-lasting performance

>How do you select a project?

>How do you construct a successful project?

Conclusions and Recommendations

The Myth!

Sustainable means increased costs or low quality

In-Place Recycling Facts

> Up to 40 % reduction in the rehabilitation cost
> Lasts longer than conventional strategies
> Uses 100% in-place materials requiring minimal energy

Why Recycle? Meet the 3E Challenge

Sustainable

Time, Oct. 1, 2007

Newsweek, April 16, 2007

Source: The Environmental Road of the Future, Life Cycle Analysis by Chappat, M. and Julian Bilal. Colas Group, 2003, p.34

🕅 Ontario

Ministry of Transportation Ministère des Transports

Cost-effective

Full-Depth Reclamation (FDR)

Energy Savings

Energy Use and Materials

Full-Depth Reclamation vs. New Base

Cost-Effectiveness

	3" CIR & 1.5" HMA	3" Mill & 3" HMA
SN	3(0.3-0.21) + (1.5" x0.42) =0.90	3 x (0.42-0.21) =0.63
Cost	CIR: 50,688 S.Y.@ \$2.30 = \$116,582 Recycling Binder: 196 tons @ \$535 = \$104,860	Rotomill: 50,688 S.Y. @ \$1.50 = \$76,032 HMA: 8,781 tons @ \$95.00 = \$834,195
	1.25 inch HMA Overlay 3,659 tons @ \$95.00 = \$347,605	
	TOTAL: \$570K	TOTAL: \$910K
	CIR & HMA provides 37% less Save \$341,180 43% increase in S	COST Unit Prices form Caltrans

Life-cycle Cost Analysis-Present Worth for Pavement Rehabilitation State-of-the-Practice on CIR and FDR Projects NDOT, Nov. 21, 2005

Long-lasting Performance

Cold In-Place Recycling (CIR) and 2" Overlay Section, 6 years, Reno, NV

Long-lasting Performance 20 years, US-95 NV

First California CIR Project 20 Years +

First California CIR Project

Grand Canyon Center Rd Project California , 15 Years +

Mendocino Pass California, 12 Years +

Outline

- >Why recycle?
- >How do you select a project?
- >How do you construct a successful project?
- Conclusions and Recommendations

Project Selection

> Investigate existing pavement condition > Environmental condition Future projected loading Contractors availability

Pavement Performance No Preservation or Rehabilitation

Traffic Time

Pavement Preservation

PAVEMENT PRESERVATION STRATEGIES

REHABILITATION STRATEGIES

PAVEMENT LIFE

Timing of Rehabilitation Techniques

Time / Traffic Loading

Hot In-Place Recycling (HIR) Candidate and Process

www.betterroads.com

KDOT recycles up to 3 million sq. yd. annually

Medium and Wide Transfers Cracking Good CIR Candidate

CIR Process

Candidate and Process

FDR with Cement

Before

California Nevada Cement Association

Outline

- > Why recycle?
- >How do you select a project?
- >How do you construct a successful project?
- Conclusions and Recommendations

How to Construct a Successful Project

- > Input from contractors & material suppliers
- Contact ARRA and AEMA for list of local suppliers and contractors
- > Use performance-based specifications
- > Develop checklist for inspectors
- > Pre- and post-construction meetings are a must!
- > Require contractor to perform mix design
- > Successful projects are based on win-win strategy

Construction of a Successful Project

CIR Train SR447, Nevada

CIR Project I-80 Pequop, NV

2008 Award: Roads & Bridges MagazineYear:2007-2008Cost:\$33.7 MillionLength:20 miles

Agency:NDOT District 3Contractor:Road & Highway BuildersSubcontractor:Valentine Surfacing

HIR Project Final Product I-Drive Orlando, FL

Mix Design Process

Outline

- >Why recycle?
- >How do you select a project?
- >How do you construct a successful project?
- Conclusions and Recommendations

Conclusions Recycling Meet the 3E Challenge

Sustainability

Energy Use Per Tonne Of Material Laid Down Laydown Transport 800 Manufacture 680 700 Aggregate Binder 600 570 538 500 456 ENergy (MJN) 400 300 200 139 100 Hot-Mix Asphalt Emulsion-Based Hot in-Place Central Plant Cold In-Place Cold-Mix Recycling Recycled Hot-Mix Recycling with

Source: The Environmental Road of the Future, Life Cycle Analysis by Chappat, M. and Julian Bilal. Colas Group, 2003, p.34

Ministry of Transportation Ministère des Transports

Emulsion

with 20% RAP

20-Yr Performance

\$600M Cost-Saving

Recommendations

 > Agencies should add all types of in-place recycling to their tool box
 > Start slowly, get contractors involved early
 > Continue improving the process

Websites with More Information

- <u>www.fhwa.dot.gov</u>
- ≽ www.fp2.org
- <u>www.arra.org</u>
- <u>www.pavementpreservation.org</u>
- ➢ <u>www.dot.ca.gov</u>
- <u>www.transportation.org</u>
- <u>www.pavementrecycling.com</u>
- <u>www.greenroads.us</u>

Let's Create a Sustainable Future!

Sohila Bemanian, PE Parsons Transportation Group Carson City, Nevada Sohila.bemanian@parsons.com (775) 297-6515