Preservation of High Volume Concrete Pavements

Larry Scofield, PE
Director, Pavement Innovation
May 5, 2011

SHRP 2 REPORT S2-R26-RR-2

Guidelines for the Preservation of High-Traffic-Volume Roadways

D. PESHKIN, K. L. SMITH, A. WOLTERS, AND J. KRSTULOVICH Applied Pavement Technology, Inc. Urbana, Illinois

J. MOULTHROP AND C. ALVARADO
Fugro Consultants, Inc.
Austin, Texas

Rural 5,000 vpd

Urban 10,000 vpd

Treatment Use on High-Traffic Volume Rural and Url Treatment Usage

	Treatment Usage						
Treatment	Rural (ADT >5,000 vpd)	Urban (ADT >10,000 vpd)					
Concrete joint sealing	Extensive	Extensive					
Concrete crack sealing	Extensive	Extensive					
Diamond grinding	Extensive	Extensive					
Diamond grooving	Moderate	Extensive					
Partial-depth concrete patching	Extensive	Moderate					
Full-depth concrete patching	Extensive	Extensive					
Dowel bar retrofitting (i.e., load transfer restoration)	Moderate	Moderate					
Ultra-thin bonded wearing course	Limited	Moderate					
Thin HMA overlay	Limited	Moderate					

Note: Extensive = Use by ≥66% of respondents; Moderate = 33% to 66% usage; Limited = <33% usage.

Treatment Use During Different Closure Conditions

		Rural		Urban				
Treatment	Overnight or Single Shift	Weekend	Longer	Overnight or Single Shift	Weekend	Longer		
Concrete joint resealing	Extensive	Limited	Limited	Extensive	Limited	Limited		
Concrete crack sealing	Extensive	Limited	Limited	Extensive	Limited	Limited		
Diamond grinding	Extensive	Limited	Limited	Extensive	Limited	Limited		
Diamond grooving	Extensive	Limited	Limited	Extensive	Limited	Limited		
Partial-depth concrete patching	Extensive	Moderate	Moderate	Extensive	Moderate	Limited		
Full-depth concrete patching	Extensive	Moderate	Moderate	Moderate	Moderate	Moderate		
Dowel bar retrofitting	Extensive	Moderate	Moderate	Moderate	Moderate	Moderate		
Ultra-thin bonded wearing course	Extensive	Limited	Limited	Extensive	Limited	Limited		
Thin HMA overlay	Extensive	Limited	Limited	Extensive	Limited	Limited		

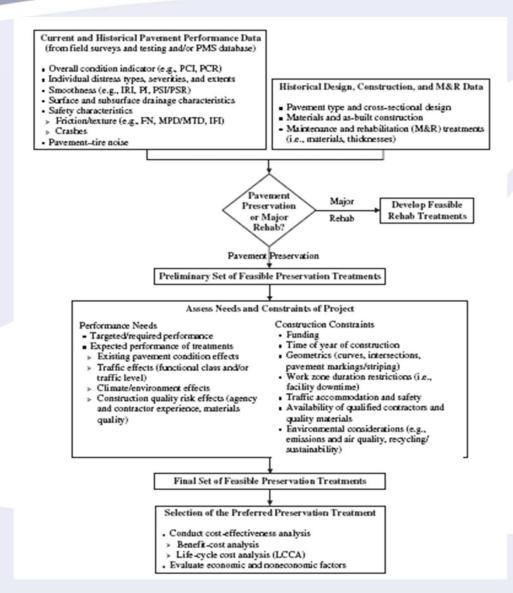
Note: Extensive = Use by ≥66% of respondents; Moderate = 33% to 66% usage; Limited = <33% usage.

Treatment Costs

Treatment	Relative Cost (\$ to \$\$\$\$)	Estimated Unit Cost
Joint resealing	\$	\$1.00 to \$2.50/ft
Crack sealing	\$	\$0.75 to \$2.00/ft
Diamond grinding	\$\$	\$1.75 to \$5.50/yd²
Diamond grooving	\$\$	\$1.25 to \$3.00/yd²
Partial-depth patching	\$\$/\$\$\$	\$75 to \$150/yd² (patched area) (equivalent \$2.25 to \$4.50/yd², based on 3% surface area patched)
Full-depth patching	\$\$/\$\$\$	\$75 to \$150/yd² (patched area) (equivalent \$2.25 to \$4.50/yd², based on 3% surface area patched)
Dowel bar retrofitting	\$\$\$	\$25 to \$35/bar (equiva- lent \$3.75 to \$5.25/yd², based on 6 bars per 12-ft crack/joint and crack/joint retrofits every 30 ft)
Ultra-thin bonded wearing course	\$\$\$	\$4.00 to \$6.00/yd²
Thin HMA overlay	\$\$\$	\$3.00 to \$6.00/yd²

Note: \$= low cost; \$\$ = moderate cost; \$\$\$ = high cost; \$\$\$ = very high cost.

Traditional Concrete Pavement Preservation


	Expected	Performance	
Treatment	Treatment Life (yr)	Pavement Lif Extension (yr	
Concrete joint resealing	2-8	5–6	
Concrete crack sealing	4–7	NA	
Diamond grinding	8-15	NA	
Diamond grooving	10-15	NA	
Partial-depth concrete patching	5-15	NA	Part
Full-depth concrete patching	5-15	NA	· ar
Dowel bar retrofitting	10–15	NA	
Ultra-thin bonded wearing course	6-10	NA	
Thin HMA overlay	6-10	NA	

Sources: Peshkin et al. 1999; Smith et al. 2008; Peshkin et al. 2007; Caltrans

2008; NDOR 2002.

Note: NA = Not available.

Sequential Approach for Evaluating and Selecting Strategies

Feasibility Matrix for Candidate Treatments (Preliminary)

			Distre	ss Types and Sever	ity Levels (L = L	.ow, M = Mediu	ım, H = Hlgh)				
			Surface Distress								
	Winde		Dallah	Map Crack/Scale	D. Grank	Denoute	Water Disad/Pump				
Preservation Treatment	PCI/	Age	Pollsh	(Non-ASR)	D-Crack	Popouts	Bleed/Pump				
Preservation freatment	PCR	(yr)			L/M/H						
Concrete joint resealing	75-90	5-10									
Concrete crack sealing	70-90	5-12									
Diamond grinding	70-90	5-12	•	•	×××	×	×				
Diamond grooving	70-90	5-12	0	×	×××	×	×				
Partial-depth concrete patching	65-65	6-15	×	0	×××	•	×				
Full-depth concrete patching	65-65	6-15	×	0	0⊙•4	×	•				
Dowel bar retrofitting	65-65	6-15	×	×	×××	×	•				
Ultra-thin bonded wearing course	70-90	5-12	•	•	⊙⊙×	0	×				
Thin HMA overlay	70-90	5-12	•	•	⊙≎×	0	×				

Note: \bullet = Highly Recommended; \odot = Generally Recommended; \circ = Provisionally Recommended; \times = Not Recommended.

May be appropriate in conjunction with partial- and/or full-depth repairs to ensure smooth profile.

Isolated incidences of D-cracking only.

soluted incidences of faulting only.

^e Likely needed in conjunction with diamond grinding.

Feasibility Matrix for Candidate Treatments (Continued)

	Distress Types and Severity Levels							Surface Characteristics		
	Joint Dis	stress	Cracking	Distress	Deformati	on Distress	Issues			
	Joint Seal Damage	Joint Spall	Corner	Long/ Trans	Faulting	Patches	Ride Quality	Friction	Noise	
Preservation Treatment	L/M/H	L/M/H	L/M/H	L/M/H	L/M/H	L/M/H	_	-	_	
Concrete joint resealing	○⊙●	o××								
Concrete crack sealing			•⊙○	•⊙∘						
Diamond grinding	×××	$\times \times \times$	$\times \times \times$	$\times \times ^{\circ a}$	$\odot \bullet \odot$	⊙●⊙	•	•	•	
Diamond grooving	×××	$\times \times \times$	$\times \times \times$	$\times \times \times$	$\times \times \times$	$\times \times \times$	×	•	•	
Partial-depth concrete patching	×××	⊙••	$\times \times \times$	×00	$\times \times \times$	0.00	×	×	×	
Full-depth concrete patching	×××	×°©	⊙••	××°	×00°	○⊙●	•	×	×	
Dowel bar retrofitting	×××	$\times \times \times$	×∞	$\times \times \times$	o⊙●₫	$\times \times \times$	×	×	×	
Ultra-thin bonded wearing course	×××	$\times \times \times$	$\circ \times \times$	000	⊙∘×	$\odot \bullet \odot$	•	•	•	
Thin HMA overlay	×××	×××	ox x	0.00	⊙∘×	⊙●⊙	•	•	•	

Feasibility Matrix for Final Identification

				Treatmen	t Durability								
		Rura	Roads			Urban Roads				Work Zone Duration Restrictions			
	High	Uiah		ne	High		Climatic Zone		Overnight			Expected Performance on	
Preservation Treatment	Traffic ADT >5,000 vpd	Deep Freeze	Moderate Freeze	Nonfreeze	Traffic ADT >10,000 vpd	Deep Freeze	Moderate Freeze	Nonfreeze	or Single Shift	Weekend	Longer	High-Volume Facility (yr)	Relative Cost
Concrete joint resealing	•	•	•	•	•	•	•	•	•			4-7	\$
Concrete crack sealing	•	•	•	•	•	0	•	•	•			4-6	\$
Diamond grinding	•	•	•	•	•	•	•	•	•			6–12	\$\$
Diamond grooving	•	×	•	×	•	×	•	•	•			6–12	\$\$
Partial-depth patching	•	•	•	•	•	0	•	•	•	••	•	5–15	\$\$/\$\$\$
Full-depth patching	•	•	•	•	•	•	•	•	•	••	•	10-15	\$\$/\$3\$
Dowel bar retrofitting	•	•	•	•	0	0	•	•	•	••	•	10-15	222
Ultra-thin bonded wearing course	0	•	•	×	•	×	•	•	•			5–7	\$\$\$
Thin HMA overlay	0	×	•	×	•	×	•	•	•			5-8	388

Note: • - Highly Recommended; ⊙ - Generally Recommended; ○ - Provisionally Recommended; × - Not Recommended.

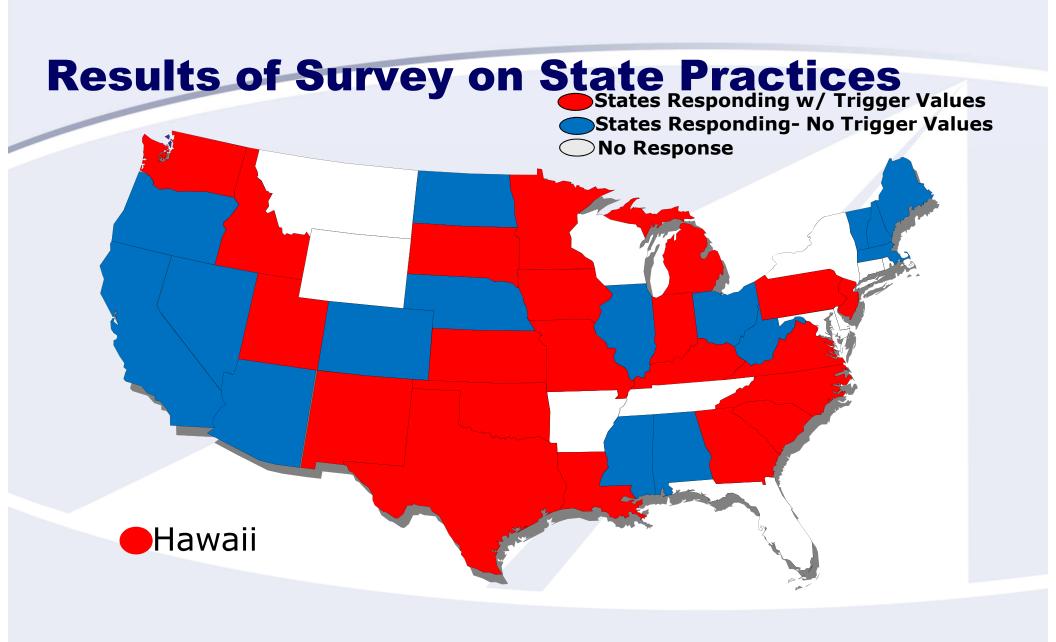
^{\$ (}lowest relative cost) +> \$\$\$\$ (highest relative cost).

^{*} Use of high early strength or fast-track proprietary materials make these treatments suitable options for overnight, single-shift, and weekend closures. Use of conventional PCC repair materials generally requires "longer" closures.

Example Preservation Decision Matrix

				Trea	itment 1	Trea	tment 2
Attribute and Selection Factor	Attribute Weight	Factor Weight	Combined Weight	Rating Score	Weighted Score	Rating Score	Weighted Score
Economic	40						
Initial cost		30	12.0				
Cost-effectiveness		30	12.0				
Agency cost		10	4.0				
User cost		30	12.0				
Total		100					
Construction/materials	25						
Availability of qualified contractors		20	5.0				
Availability of quality materials		20	5.0				
Conservation of materials/energy		30	7.5				
Weather limitations		30	7.5				
Total		100					
Customer satisfaction	25						
Traffic disruption		40	10.0				
Safety issues		40	10.0				
Ride quality and noise issues		20	5.0				
Total		100					
Agency policy/preference	10						
Continuity of adjacent pavements		20	2.0				
Continuity of adjacent lanes		20	2.0				
Local preference		60	6.0				
Total		100					
		Cumulative	Weighted Score				

Part 2 PMS Trigger Values



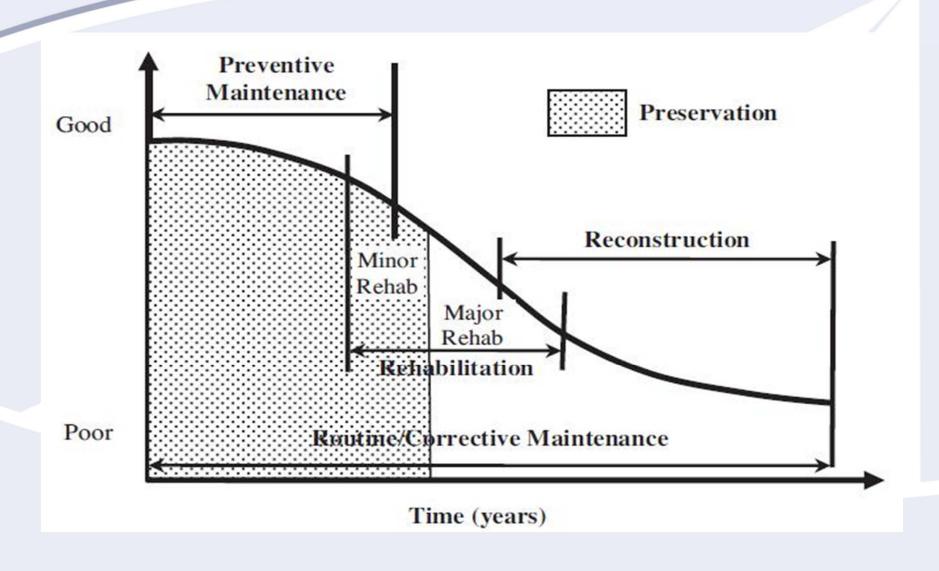
Purpose of Survey

- Establish Estimate of Percent of Concrete Pavement in Each Network
- Establish State-of-the-Practice in States' Management of Concrete Pavements
- Review Distress Data Collection Procedures of Agencies
- Identify Opportunities to Improve Practice
 - Connection of Design to PMS (Closed Loop)

Survey Approach

- FHWA Provided Data Base of State PMS Contacts
- Email Survey to the State Contacts
- Follow Up Emails for non-responding states
- Lose a Couple Surveys Here and There
- Prepare Draft Report
- Transmit Report to States & Full ETG for Comment
- Finalize Report

Potential Follow Up Activities


- Develop Best Practices Reports from Selected States
- Research What Parameters Should be Used to Manage Concrete Pavement Preservation
- Establish Life Extension of Each Concrete Preservation Treatment
- Engage TSP2 Partnerships in Identifying Opportunities and Solutions
- FHWA Facilitate State Showcases at TSP2
- NC2 Presentation

- Compare Survey Results to FHWA
 Pavement Preservation State
 Appraisals and FHWA PMS Research
 Review
- Compare State/Federal PMS Curves to LTPP Concrete Performance Curves
- Develop Procedures for Accounting for Strategy Cost Increases Over Time
- Provide Update to FHWA PMS
 Database
- What to Do With Final Report?

Part 3 – Expected Pavement Life Extension

Treatment Life Versus Pavement Extension Life

Traditional Pavement Management

Traditional Concrete Pavement Preservation

	Expected	Performance	
Treatment	Treatment Life (yr)	Pavement Li Extension (y	100
Concrete joint resealing	2–8	5–6	
Concrete crack sealing	4–7	NA	
Diamond grinding	8-15	14 - 17	
Diamond grooving	10–15	NA	
Partial-depth concrete patching	5–15	NA	?
Full-depth concrete patching	5–15	NA	Ī
Dowel bar retrofitting	10–15	NA	
Ultra-thin bonded wearing course	6–10	NA	
Thin HMA overlay	6–10	NA	

Sources: Peshkin et al. 1999; Smith et al. 2008; Peshkin et al. 2007; Caltrans 2008; NDOR 2002.

Note: NA = Not available.

Is Joint Sealant Cost Effective?

FHWA Sealant Effectiveness Study

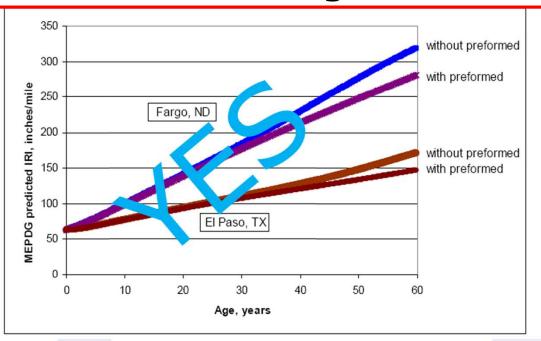
TechBrief

The Concrete Pavement Technology Program (CFTP) is an integrated, restornal effect to Improve the long-term performance and cost-effectiveness of concrete povements. Managed by the Federal Highway Administration through partmerships with Seate highway agencies, industry, and academia, CFTP's primary goals are to reduce congestion, improve parlomance, and foster hinovation. The program was designed to produce user-thinolly software, procedures, methods, guidelines, and other tools for use in materials selection, mobuse proportioning, and the design, construction, and rehabilitation of concepts

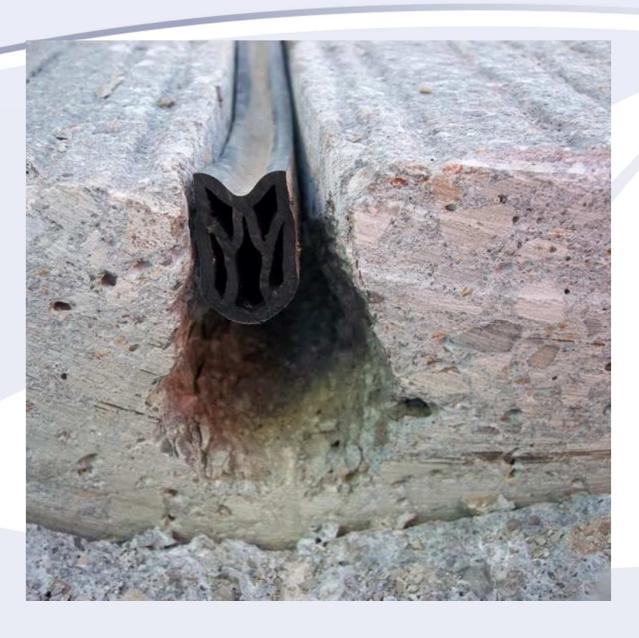
ни извига допускованием ста

Performance of Sealed and Unsealed Concrete Pavement Joints

This TechBrief presents the results of a nation-wide study of the effects of transverse joint sealing on performance of jointed plain concrete powernent (JPCP). This study was conducted to assess whether JPCP designs with unsealed transverse joints. Distress and deflection data were collected from 117 test sections at 26 experimental joint sealing projects located in 11 states. Performance of the powernent test sections with unsealed joints was compared with the performance of powernent test sections with one or more types of sealed joints.


BACKGROUND

The sealing of transver ion joints in JPCP has been standard practates for many years. Its widespread use tice throughout mu n belief that se og joints improves concrete pavement is due to the com water infiltration into the pavement ways: by reduct performance in to structure hereby ucing the occum e of moisture-related distresses such g, and by pronting the infiltration of incompressas pumpt, and far tones) the joints, thereby reducing the likelitbles (Le., sa and sn of pressu. related jo. resses such as joint spalling and blowups. se John in Jointed concrete pavement (JCP) are typically created w cut to force controlled cracking, followed by a secider saw cur produce a reservoir for the joint sealant material. This al approach of sawing and sealing transverse contraction joints is account for between 2 and 7 percent of the initial construction Moreover, these sealed transverse joints require resealing one or more times over the service life of the pavement, leading to additional costs in terms of labor, materials, operations, and lane closures.


Recently, several State departments of transportation (DOTs) have been questioning conventional transverse joint sawing and sealing practices. These agencies contend that the benefits derived from sealing do not offset the costs associated with the placement and continued upkeep of the sealant over the life of the pavement. As a result, they have been experimenting with different sawing and sealing alternatives, for example:

- Narrow unsealed joints, consisting of single saw cuts that are left unsealed
- Narrow filled joints, consisting of single saw cuts that are filled with sealant that adheres to the sides and bottom of the saw cut.
- Narrow sealed joints, consisting of single saw cuts that contain a narrow backer rod and sealant material.

AASHTO New Design Guide

Preservation

Repair

Traditional Approach

Questions?