Northeast Bridge Preservation Partnership Meeting

Superstructure Preservation Strategies Aetna Viaduct Superstructure Repairs Route I-84 – City of Hartford, CT State Project No. 63-648

> David A. Cutler, P.E. Supervising Engineer Consultant Design - Bridge

Sequence of Today's Presentation

- Present a brief description and rehabilitation history of the Aetna Viaduct
- Discuss the current rehabilitation project
 - Scope
 - **Design criteria and sequencing** of repairs
 - **Construction Issues**
 - Photos

<u>Aetna Viaduct</u> Existing Bridge Description

- So named due to the proximity to the Aetna Life and Casualty Complex to the north.
- Group of five steel multi-girder bridges, Built in 1965
- I-84 over Amtrak Railroad, parking lots and city streets in Hartford, CT
- Three lanes of mainline I-84 through traffic plus various operational exit and entrance ramps
- I-84 eastbound consists of 44 spans (Br. 03160A)
- I-84 westbound consists of 42 spans (Br. 03160B)
- I-84 eastbound on ramp (Sigourney Street) (Br. 03160C)
- I-84 westbound off ramp (Sigourney Street) (Br 03160D)
- I-84 eastbound (Br. 03301)

Aetna Viaduct Quick Facts

- 5 Bridges
- 111 Spans
- 1926 Beam Ends
- 30 Steel Pier Caps
- 505,000 ft² of Deck Area
- 175,000 Vehicles per Day
- (Highest ADT in Connecticut)

<u>Location Plan</u>

<u>Recent Aetna Viaduct</u> <u>**Repair Projects**</u>

- Project 63-488 minor steel repairs and pin and hanger retrofit (1992)
- Project 63-503 deck repairs by Maintenance forces (1994)
- Project 63-526 emergency deck repairs (1995)

 Project 63-565 adjacent bridge deck work—parapet modifications (2000)

<u>Condition of</u> <u>Existing Structure</u>

- Steel corrosion
- Reduced load capacity
- Deficient concrete deck slab and bituminous concrete overlay
- Deteriorated bridge deck joints
- Deteriorated drainage system

Impacts of the Current Bridge Condition

- The Bridge Maintenance Department is frequently involved in repairs
 - 1. Expensive
 - 2. Time Consuming
 - **3.** Reactive
 - 4. Traffic Impacts
- Increased potential for highway shutdowns for immediate repairs
- Increased time and effort during bridge inspections to evaluate and document the condition
- Increased rate of deterioration

The Bridge is in need of a near term rehabilitation project to ensure that existing capacity can be maintained during the planning and preparation of a longer term solution.

... an emergency situation exists relative to the physical condition of Bridge No. 03160 A, B, C and D ... and Bridge No. 03301 ...

STATE OF CONNECTICUT DEPARTMENT OF TRANSPORTATION

2800 BERLIN TURNPIKE, P.O. BOX 317546 NEWINGTON, CONNECTICUT 06131-7546

An Equal Opportunity Employer

I, H. James Boice, Acting Commissioner of Transportation of the State of Connecticut, hereby declare under the authority vested in me pursuant to Section 13b-26 (f) of the Connecticut Deneral Statutes that an emergency situation exists relative to the physical condition of Bridge No. 03160 A, B, C and D (Aetna Viaduct), Interstate 84 (I-84) and Ramps over Amtrak, City Streets and Parking Lots in Hartford and Bridge No. 03301, 1-84 asthound over Broad Street and 1-84 Ramp 191.

Based on recent inspections of the bridge, areas of the bridge deck, superstructure and substructure have been found to be significantly deteriorated and the necessary repairs are beyond the capacity of the Department's Maintenance forces.

Existing maintenance contractual forces will be utilized to address the most critical eds, which will consist of repairs to steel members with significant section loss and interim repairs to the bituminous wearing surface to insure the safety of the travelling public. The Department will also expedite a project to address additional repairs to the deck, superstructure and substructure.

Therefore, I intend to employ, in any manner, such assistance as may be conired to repair this structure in order to provide safe conditions and correct the emergency 1 have so declared.

Dated this 25th day of Hps 2, 2008 at Newington, Connecticut.

Acting Commissioner

ss: Newington

Connecticut

seared, H. James Boice, Acting Commissioner of Transportation of the State of Connecticut, known to me to be the person described in the foregoing instrument, and acknowledged that he executed the same in capacity therein and for the purpose therein

Lisa S. King

Notary Public

LISA S. KING Notary Public Connecticut My Commission Expires June 30, 2011

Connecticut Department of Transportation

Based on recent inspections of the bridge, areas of the bridge deck, superstructure and substructure have been found to be significantly deteriorated and the necessary repairs thes, the 2010 day of 12900, 2000, before me, Lisa S. King, the undersigned, are beyond the capacity of the contained. Department's Maintenance forces.

Scope of Work for Project No. 63-638

Phase 1 - Perform immediate steel repairs at 25 locations, mill & fill overlay to last through the winter

Phase 2 – Provide design plans to include:

- Clean, repair, and paint local areas of deteriorated structural steel pier caps and stringer ends
- Repair concrete bridge deck
- Replace bridge deck joints
- Replace bituminous concrete wearing surface on deck

Stringer End Repairs

- Section loss spreadsheet generated from latest biennial inspection report - 2006
- 2008 biennial data available after project award in spring of 2009
- Special inspection in fall 2009 for spans over Amtrak
- Additional locations added by construction order

Spreadsheet Generated From Report

						0316	0A Girder S	Web L for Sh	.088 1991	We	b Loss for Bearing	Comments						
Span	Pier	Girder	Girder Type	Web Thickness (AISC)		Original Web Area	North Elev. Web Section	South Elev. Web Section	Web Perforation	12.5%			63.2%					
ACE	054	ACEI	W26 X 160	0.6507	, 5/01	(8q. in.)	LOSS Depth	Loss Depth		38.5	%		67.3%					
1SE	SE1	1951	W36 X 160	0.650"	5/8*	22.00	up to 1/4"	un to 1/4"										
15E	SE2	19E1	W36 X 160	0.650"	5/8*	22.08	up to 3/16"	up to 1/4"		13.6	13.6%		67.3%					
2SE	SE2	2SE1	W36 X 170	0.680"	11/16*	23.10	up to 1/4"	up to 1/4		6.55	6.5%		64 094					
2SE	SE2	2SE7	W36 X 194	0.765*	3/4"	25.99	up to 1/8"	up to 3/16"		0.076			04.370					
2SE	SE3	2SE1	W36 X 170	0.680"	11/16*	23.10	up to 3/16"	up to 1/4"		1.6%			40.9%					
3SE	SE3	3SE1	W36 X 170	0.680"	11/16"	23.10	up to 1/4"	up to 1/4"		_								
3SE	SE3	3SE8	W36 X 150	0.625*	5/8*	21.23	up to 1/4"	up to 3/16"		7.3%			61.7%					
3SE	SE4	3SE1	W36 X 170	0.680"	11/16*	23.10	up to 3/16"	up to 3/16*		6.5	ε.		73.5%					
2M	ML3	2M10	W36 X 194	0.765*	3/4*	25.99	up to 5/16"	up to 5/16"										
2M	ML3	2M11	W36 X 230	0.760*	3/4*	25.37	up to 1/8"	up to 1/8"		< 5%	32.9	9%						
2M	ML3	2M12	W36 X 230	0.760*	3/4*	25.37	up to 3/16*	up to 1/8"		< 5%	41.3	1%						
2M	ML3	2M19	W36 X 194	0.765*	3/4*	25.99	up to 5/16"	up to 1/4"		9.9%	57.3	2%						
3M	ML3	3M10	W36 X 194	0.765*	3/4*	25.99	up to 3/16*	up to 1/4"		6.3%	57.3	2%						
3M	ML3	3M12	W36 X 230	0.760*	3/4*	25.37	up to 3/16*	up to 3/16*		< 5%	49.0	0%						
3M	ML3	3M13	W36 X 230	0.760*	3/4*	25.37	up to 1/8"	up to 1/8"		< 5%	32.9	9%						
3M	ML3	3M14	W36 X 230	0.760*	3/4*	25.37	up to 1/8"	up to 1/8"		< 5%	32.9	9%				1.5.6		
3M	ML3	3M19	W36 X 194	0.765"	3/4*	25.99	up to 3/8"	up to 3/8"		10.1%	98.0	0%						
3M	ML4	3M10	W36 X 194	0.765*	3/4*	25.99	up to 1/4"	up to 1/4"		4.3%	65.4	4%						
3M	ML4	3M12	W36 X 230	0.760*	3/4*	25.37	up to 1/4"	up to 1/4"		< 5%	65.8	8%						
3M	ML4	3M13	W36 X 230	0.760*	3/4*	25.37	up to 1/4"	up to 1/16"		< 5%	41.3	1%						
3M	ML4	3M14	W36 X 230	0.760*	3/4*	25.37	up to 1/4"	up to 1/8"		< 5%	49.3	3%						
3M	ML4	3M19	W36 X 194	0.765*	3/4*	25.99	up to 3/16"	up to 3/16"		6.3%	49.0	0%						
4M	ML4	4M9	W36 X 194	0.765*	3/4*	25.99	up to 5/16"	up to 5/16"		5.4%	81.3	7%						
4M	ML4	4M18	W36 X 194	0.765*	3/4*	25.99	up to 5/16"	up to 1/8"		4.2%	37.8	8%						
4M	ML5	4M9	W36 X 194	0.765*	3/4*	25.99	up to 1/4"	up to 5/16*		4.6%	73.	5%						
4M	ML5	4M18	W36 X 194	0.765*	3/4*	25.99	up to 3/8"	up to 5/16*		6.0%	89.9	9%						
5M	ML5	5M9	W36 X 150	0.625"	5/8"	21.23	up to 1/4"	up to 5/16"		6.6%	90.0	0%						
5M	ML5	5M17	W36 X 170	0.680"	11/16*	23.10	up to 5/16"	0"		7.6%	46.0	0%						
5M	ML6	5M17	W36 X 170	0.680"	11/16"	23.10	up to 1/4"	up to 1/4"		12.6%	65.3	7%						
6М	ML6	6M17	W36 X 135	0.605"		20.76	up to 5/16*	up to 1/4"	3"w x 2-1/4"h	36.0%	0	к	Web thickness field D-meter. Web rep bottom by add	I measured with aired along the ling a plate.				1.

Spreadsheet Generated by the Designer

Comments			Web Loss for Bearing		Wel	Repair (n	Previous Repa		al Repair	Additiona		Original Repair				
					for	n Los	r Section L	031								
		2%	63.25	.5%	Pt 12	ev. tion W pth	South Elev. Web Section Loss Depth	North Elev. Web Section Loss Depth	Original Web Area (sq. in.)	lckness SC)	Web Th (Al	Girder Type	Girder	Pier	Span	
		3%	67.35	5%	38		5/16"	3/16"	22.08	5/8"	0.650"	W36 X 160	ASE1	SE1	ASE	
				00000		4"	up to 1/4"	up to 1/4"	22.08	5/8"	0.650"	W36 X 160	1SE1	SE1	1SE	
		3%	67.3%		1.3	4*	up to 1/4"	up to 3/16"	22.08	5/8"	0.650"	W36 X 160	1SE1	SE2	1SE	
		19/	64.09/		-	16"	up to 5/16"	up to 1/4"	23.10	11/16*	0.680"	W36 X 170	2SE1	SE2	2SE	
		0.00	04.9	0.3%		16"	up to 3/16"	up to 1/8"	25.99	3/4"	0.765"	W36 X 194	2SE7	SE2	2SE	
	rrent<90%, Future >100%	Cu	61.7%	7.3%		4"	up to 1/4"	up to 3/16*	23.10	11/16*	0.680"	W36 X 170	2SE1	SE3	2SE	
			73.5%	6.5%		4"	up to 1/4"	up to 1/4"	23.10	11/16*	0.680"	W36 X 170	3SE1	SE3	3SE	
			70.0%	15.9%		16"	up to 3/16"	up to 1/4"	21.23	5/8"	0.625"	W36 X 150	3SE8	SE3	3SE	
1000			55.1%	< 5%		16"	up to 3/16"	up to 3/16*	23.10	11/16*	0.680"	W36 X 170	3SE1	SE4	3SE	
			81.7%	9.0%		16"	up to 5/16"	up to 5/16*	25.99	3/4"	0.765"	W36 X 194	2M10	ML3	2M	
			32.9%	< 5%		8"	up to 1/8"	up to 1/8"	25.37	3/4"	0.760"	W36 X 230	2M11	ML3	2M	
			41.1%	< 5%		8"	up to 1/8"	up to 3/16*	25.37	3/4"	0.760"	W36 X 230	2M12	ML3	2M	
	rrent>90%; Future >100%	Cu	57.2%	9.9%		4*	up to 1/4"	up to 5/16"	25.99	3/4"	0.765"	W36 X 194	2M19	ML3	2M	
	t<90%, Future betw. 90-100%	Curren	57.2%	6.3%		4"	up to 1/4"	up to 3/16*	25.99	3/4"	0.765"	W36 X 194	3M10	ML3	3M	
	t<90%, Future betw. 90-100%	Curren	49.0%	< 5%		16"	up to 3/16"	up to 3/16*	25.37	3/4"	0.760"	W36 X 230	3M12	ML3	3M	
			32.9%	< 5%		8"	up to 1/8"	up to 1/8"	25.37	3/4"	0.760"	W36 X 230	3M13	ML3	3M	
			32.9%	< 5%		8"	up to 1/8"	up to 1/8"	25.37	3/4"	0.760"	W36 X 230	3M14	ML3	3M	
			98.0%	10.1%		8"	up to 3/8"	up to 3/8"	25.99	3/4"	0.765"	W36 X 194	3M19	ML3	3M	
	t<90%, Future betw. 90-100%	Curren	65.4%	4.3%		4*	up to 1/4"	up to 1/4"	25.99	3/4"	0.765"	W36 X 194	3M10	ML4	3M	
	rrent>90%; Future >100%	Cu	65.8%	< 5%		4"	up to 1/4"	up to 1/4"	25.37	3/4"	0.760*	W36 X 230	3M12	ML4	3M	
			41.1%	< 5%		16"	up to 1/16"	up to 1/4"	25.37	3/4"	0.760*	W36 X 230	3M13	ML4	3M	
			49.3%	< 5%		8"	up to 1/8"	up to 1/4"	25.37	3/4"	0.760*	W36 X 230	3M14	ML4	3M	
			49.0%	6.3%		16"	up to 3/16"	up to 3/16*	25.99	3/4"	0.765"	W36 X 194	3M19	ML4	3M	
			81.7%	5.4%		16"	up to 5/16"	up to 5/16*	25.99	3/4"	0.765"	W36 X 194	4M9	ML4	4M	
	t<90%, Future betw. 90-100%	Curren	37.8%	4.2%		8"	up to 1/8"	up to 5/16*	25.99	3/4"	0.765"	W36 X 194	4M18	ML4	4M	
	rrent>90%; Future >100%	Cu	73.5%	4.6%		16"	up to 5/16"	up to 1/4"	25.99	3/4"	0.765"	W36 X 194	4M9	ML5	4M	
			89.9%	6.0%		16"	up to 5/16"	up to 3/8"	25.99	3/4"	0.765"	W36 X 194	4M18	ML5	4M	
			90.0%	6.6%		16"	up to 5/16"	up to 1/4"	21.23	5/8"	0.625"	W36 X 150	5M9	ML5	5M	
			46.0%	7.6%			0*	up to 5/16*	23.10	11/16*	0.680"	W36 X 170	5M17	ML5	5M	
			65.7%	12.6%		4"	up to 1/4"	up to 1/4"	23.10	11/16*	0.680"	W36 X 170	5M17	ML6	5M	
	ickness field measured with D- Web repaired along the bottom by adding a plate.	Web thi meter. V	ок	36.0%	v x 2-1/4"h	4-	up to 1/4"	up to 5/16*	20.76		0.605"	W36 X 135	6M17	ML6	6M	

<u>Design Criteria for Stringer End</u> <u>Repairs</u>

Allowable Bearing Stress 0.8Fy=26.4 KSI (Fy=33KSI)

Designer assumed 1/16" future section loss

No Repair Required at locations where present and anticipated section loss yields a bearing stress less than 90% of allowable.

Type "A" Repair (No Jacking Required) Utilized at locations where present section loss yields a bearing stress less than 90% of allowable but will exceed 90% of allowable with additional anticipated section loss.

Type "B" Repair (With Jacking)

Utilized at locations where present section loss yields a bearing stress greater than 90% of allowable. Jacking used to relieve excess stress prior to bolting repair plates.

Stringer End Repairs

Project Contract Plans
63 Locations
46 Type "A", 17 Type "B"

 After Last Construction Order 109 Additional Locations 48 Type "A", 61 Type "B"

Stringer End Repair Sequencing

 Note on plans to perform all stringer end repairs prior to the use of oscillatory compaction equipment for placement of bituminous concrete overlay

<u>Typical Stringer End Repair Prior to</u> <u>Paint</u>

CONNECTICOL TOLIKLAG

Steel Pier Cap Repairs

- Section loss spreadsheet generated from latest biennial inspection report - 2006
- 2008 biennial data available after project award in spring of 2009
- Special inspection in fall 2009 for spans over Amtrak
- Additional locations added by construction order

Spreadsheet Generated From Report

															inv. Index remaining	(Min % x CJM	Oper. rema	Index (Min % Ining x CJM	Pler	Bridge					
				مراجرا																Ratir	(g)		Rating)		
]	27			47	ML27	A
																				28			47	WBR4	D
]	28			47	ES3	В
			31604		PCA			ECTIO						ECIO					MDAL	29			50	ML31	В
		Continuous Cantiever Mitsaan 1 interfor support Mitsaan 2 Mitsaan 2															31			49	ML18	D			
Ranking	Pler	Bridge 3160	Cap (Shared)	Cant Neg. m	iever ioment	Pos. m	pan 1 10ment	Neg. m	oment	Pos. m	oment	Span Lengths (feet)				Worst Case Section Loss	Worst Case Percent (Tons)			31			54	WBR3	D
1	MI 27	A	(Y/N) Y	Top Flange 3.4%	Bot. Flange	23.7%	Sot. Flange	Top Flange 3.6%	Bot. Flange	Top Flange N/A	Bot. Flange N/A	N. Cantilver	Span #1	Span #2 N/A	3. Cantilever	23.7%	Remaining 76.3%	Inventory 36	Operati	30			55	MI 27	B
2	WBR4	D	Ň	32.1%	4.1%	32.6%	9.0%	N/A	N/A	N/A	N/A	16	18	N/A	N/A	32.6%	67.4%	41	70	32			55	mL27	
3	ES3 ML31	B	N Y	35.1%	N.L.	4.7%	7.0%	N/A 14.3%	9.9%	N/A N/A	N/A N/A	16	48	N/A N/A	5 N/A	35.1%	64.9%	43	72	32			55	WBR2	D
5	ML18	Ď	Ý	31.9%	<3%	30.4%	<3%	N/A	N/A	N/A	N/A	16	17	N/A	N/A	31.9%	68.1%	45	72	33			56	MI 24	в
7	ML27	в	Y	23.4% N/A	N/A	10.2%	<3%	2.6%	N.L.	N/A	N/A	N/A	78	N/A N/A	N/A	10.2%	89.8%	36	61	22			55	ML 28	A
8	WBR2	D	N	21.0%	<3%	19.3%	N.L	N/A	N/A	N/A	N/A	16	18	N/A	N/A	21.0%	79.0%	41	70	33			30	ML20	~
10	ML28	Ā	Y	0.5% N/A	N/A	16.9%	×376	4.8%	N. L.	N/A	N/A	N/A	62.5	N/A	4.5 N/A	16.9%	83.1%	40	67	35			59	ML28	в
11 12	ML28 ML31	B	Y Y	N/A 11.9%	N/A N. L.	11.9%	N.L.	8.5%	<3% 4.3%	N/A N/A	N/A N/A	6 N/A	70 67	N/A N/A	N/A 20	11.9% 11.9%	88.1% 88.1%	40 41	67 70	36			62	ML31	Α
13	ML23	B	N	N/A 25.5%	N/A	9.4%	N.L.	6.4% N/A	<3%	9.4%	N.L.	N/A	71	40 N/A	3.5	9.4%	90.6%	41	68	37			62	MI 23	в
15	SE3	Ā	N	9.4%	N.L.	15.2%	6.6%	12.9%	5.4%	4.7%	N.L.	7	48	20	7	15.2%	84.8%	45	76	57			62	MLLED	-
16	ML25	B	N	10.4%	N. L.	9.5%	6.2%	N/A	N/A	N/A	N/A	N/A	73	N/A	23.5	10.4%	89.6%	43	72	- 31			62	ML19	Б
17	WE3	Â	N	N/A	N/A	16.7%	N.L.	14.1%	N. L.	10.8%	8.2%	N/A	39	69	N/A	16.7%	83.3%	47	77	39	64	WE3	Α		
19	ML20	Α	N	27.2%	6.5%	21.7%	3.5%	22.3%	3.5%	9.4%	N. L.	4	37	37	N/A	27.2%	72.8%	54	90	39	66	ML20	A		
20	WE2	Α	N	20.4%	N. L.	10.0%	3.2%	N/A	N/A	N/A	N/A	19	69	N/A	N/A	20.4%	79.6%	50	83	40	66	WE2	A		
21	ML3	<u>_</u>	¥.	12.9%	N.L.	N/A	N/A	12.7%	3.1%	27.2%	8.3%	N/A	25.5	63	7.5	27.2%	72.8%	56	94	41	68	ML3	A		
22	ML3	-		23.476	N. L.	N.L.	N.L.	N.L.	3.0%	21.276	10.3%	0.0	29	20	NIA	21.276	72.0%	30	94	41	00	MLS	•		
23	ML 30	-	- -	N/A	N/A	10.2%	10.6%	9.6%	3.4%	16 4%	×376	N/A	30.5	73	N/A	15.4%	83.6%	40	81	41	68	ML19			
25	MI 24	-	Ň	22.0%	NI	5 3%	< 384	8.2%	NI	11.2%	N.L.	9	37	37	N/A	22.0%	77 1%	54	90	42	60	ML24	A		
20	ML 30	B	v	N/A	N/A	14 3%	4.4%	10.7%	3.7%	14.0%	6.2%	N/A	34.5	73	N/A	14 3%	85.7%	49	81	42	69	ML24	B		
27	FBRS	c	Ň	N/A	N/A	19.0%	NI	N/A	N/A	N/A	N/A	N/A	39.5	N/A	N/A	19.0%	81.0%	54	90	44	73	EBRS	c		
28	MI 26	Ă	Ň	35.4%	<3%	23.9%	NI	N/A	N/A	N/A	N/A	20.5	40	N/A	9	35.4%	64.6%	68	113	44	73	MI 26	Ă		
29	WE1	A	N	N/A	N/A	6.4%	N.L.	N/A	N/A	N/A	N/A	N/A	68	N/A	N/A	6.4%	93.6%	47	77	44	72	WE1	A		
30	ML23	Α	N	11.4%	5.9%	17.6%	3.3%	10.6%	N.L.	14.0%	<3%	9	37	37	N/A	17.6%	82.4%	54	90	44	74	ML23	Α		
31	ML21	Α	N	14.0%	<3%	4.6%	<3%	16.4%	<3%	15.3%	<3%	6	37	37	N/A	16.4%	83.6%	54	90	45	75	ML21	A		
32	ML5	A	N	19.7%	<3%	25.0%	8.5%	N/A	N/A	N/A	N/A	9	39	N/A	19.5	25.0%	75.0%	61	101	46	76	ML5	A		
33	ML20	В	N	14.0%	N. L.	22.0%	5.0%	N/A	N/A	N/A	N/A	16	54	N/A	17	22.0%	78.0%	59	101	46	79	ML20	в		
34	ML22	Ä	N	14.0%	3.5%	<3%	N.L.	4.7%	N. L.	<3%	N. L.	8	37	37	N/A	14.0%	86.0%	54	90	46	77	ML22	Α		
35	ML22	В	N	10.6%	N. L.	7.7%	N. L.	N/A	N/A	N/A	N/A	22	36	N/A	17	10.6%	89.4%	52	88	46	79	ML22	B		
36	ML21	в	N	16.4%	N. L.	9.4%	N. L.	N/A	N/A	N/A	N/A	18	45	N/A	17	16.4%	83.6%	56	94	47	79	ML21	B		
37	ML4	A	N	19.6%	<3%	14.4%	<3%	N/A	N/A	N/A	N/A	10.5	63	N/A	N/A	19.6%	80.4%	59	101	47	81	ML4	A		
38	ML29	в	Y	11.7%	<3%	4.0%	5.6%	N/A	N/A	N/A	N/A	20	72.5	N/A	N/A	11.7%	88.3%	54	90	48	79	ML29	В		
39	ML29	Α	Y	N/A	N/A	8.3%	<3%	8.4%	N. L.	N. L.	N. L.	N/A	55	72.5	N/A	8.4%	91.6%	54	90	49	82	ML29	A		
40	ML18	A	Y	16.4%	N. L.	16.4%	N. L.	N. L.	N. L.	NL	N. L.	19	45	43.5	N/A	16.4%	83.6%	61	103	51	86	ML18	A		
41	ML26	в	N	7.8%	N. L.	3.0%	N. L.	N/A	N/A	N/A	N/A	N/A	71.5	N/A	16	7.8%	92.2%	59	99	54	91	ML26	B		
42	EBBS	0	N	5.0%	NI/A	NI/A	NI/A	NI/A	NI/A	N/A	NI/A	NI/A	30.5	NI/A	75	5 0%	95 0%	58	07	55	02	FBB6	C		

Notes: The purpose of the above table is to sort existing steel pier caps for bridges 3180A-D in order of which are likely to control the as-inspected load rating (from most likely to least likely) based on the 1996 CJM as-built load ratings and the flange section losses calculated from the 2008 biennial inspection.

Pier cap spans are numbered from the fascia to the median. N/A = Not Applicable N. L. = No Significant Loss

BOLDFACE TYPE = Portions over AMTRAK RR not inspected, Flagman unavailable

<u>Design Criteria for Steel Pier Cap</u> <u>Repairs</u>

- 36 Tons Inventory, 58 Tons Operating
- Used 1996 As-Built Load Ratings supplemented with flange section losses calculated from subsequent inspections to identify repair areas.
- Four Sections Checked– Cantilever (Neg. Moment), Midspan (Pos. Moment), Interior Support (Neg. Moment)

Steel Pier Cap Repairs

 Contract Plans –22 Pier Caps (35 Repair Locations)

 After Last Construction Order
5 Additional Pier Caps
2 New locations on pier caps already in the project

Steel Plate Repair Sequence

Steel Pier Cap ML30B

- After supplemental inspection of spans over Amtrak, Pier Cap ML30B had a negative inventory load rating
- Top flange width to thickness ratio controls
- Top flange width assumed to be distance between webs
- Also checked using top flange width measured between rivet lines (probably more realistic)
- Inventory rating less than 36 Tons

ML30B Emergency Weekend Repair

- Wednesday design meeting Restrict Permit Loads
- Thursday meeting with Contractor
- Designer expedited shop drawing review
- Contractor used on-hand material to start immediately and worked through the weekend
- Repair complete early next week

ML30B Work Area

Steel Pier Cap ML30B

Steel Pier Cap ML30B

<u>Concrete Bridge Deck Repairs</u>

- Full depth and partial depth repairs in scope
- Ground Penetrating Radar (GPR) survey done September 2008. This information was included into contract plans
- Contractor was allowed six spans to be milled and repaired at a time (in 14 calendar days, nighttime lane closures only)
- WB started first
- Contractor sequenced repair locations to avoid conflicts with steel repairs and joint replacement
- Deck work is complete, comparison between GPR as-builts is pending

Joint Replacement

- Most deck joints asphaltic plug
- Some existing joints were to remain ("plank" joints over original finger joints)
- Contractor unable to perform deck patching adjacent to exposed plank joints due to bituminous ramping (1"/40') requirement, these joints had to be removed

Existing Plank Joint

Phase 1 Stringer Repair

Repaired Pier Cap

Thank You....

For Your Attention

