Strengthening and Preserving Concrete Bridges using FRP Composites

RIGOBERTO BURGUEÑO, PH.D.
Associate Professor of Structural Engineering

Department of Civil and Environmental Engineering
Michigan State University
WHAT ARE FIBER REINFORCED POLYMER (FRP) COMPOSITES?

A matrix (polymer) reinforced with stiff synthetic fibers

- **Common FRP Constituent Materials for Strengthening Systems**
 - Fibers: Carbon, E-Glass, Aramid
 - Resins: Epoxy, Vinylester, Polyester

- **Other fiber reinforced composite materials**
 - Straw in clay
 - fiber reinforced concrete
 - Natural materials: wood, sea shells, bone

- **More conventional composite materials**
 - reinforced concrete
 - chopped strand board, plywood
Fiber-Reinforced Composites – Fiber Forms
Advantages of FRP Composites

- **Structural Benefits**
 - High strength/weight and stiffness/weight properties
 - Controllable directional stiffness & strength
 - Good fatigue resistance
 - Short “development lengths”

- **Life-Cycle Benefits**
 - Increased corrosion resistance
 - Resistance to chemical attack
 - Thin (i.e., unobtrusive)

- **Economic Benefits**
 - Low installation cost
 - Fast turn around
Comparative Properties of FRP Composites
Factors Affecting Mechanical Properties

- Type of fiber reinforcement
- Fiber volume
- Fiber orientation
- Resin type
- Manufacturing process
- Quality control
FRP COMPOSITES – Realistic Properties for Civil Engineering Applications

- **Strength**: Values comparable to high strength structural steels can be achieved. However, their non-ductile response limits the range that can be used.

- **Strain**: Failure strains are low and typically limited to 1% for carbon and up to 3% for glass composites.

- **Modulus**: For quasi-isotropic assumptions it ranges from 10% to 30% of steel and for unidirectional composites from 1/3 to 2/3 of the modulus of steel.

- **Cost**: Dominated by the price of the fiber material, ranging per pound from $1-3 for glass.
Strengthening, Retrofitting & Preservation

- **Strengthening**
 - Flexural Strengthening (beams, slabs, walls, etc.)
 - Shear Strengthening (beams, columns, walls, etc.)
 - Axial Enhancement (columns, pressure vessels)

- **Retrofitting**
 - Shear (beams, columns, walls, joints)
 - Confinement (beams, columns, joints)
 - Lap Splices (beams, columns, joints)

- **Preservation**
 - Corrosion Inhibition (columns, beams, etc.)
 - Shallow Repair Anchorage (columns, beams, etc.)
Typical FRP Strengthening Systems

- **Wet-Layup Systems**
 - Unidirectional fiber sheets
 - Multidirectional fiber sheets
 - Mechanically applied fiber tows

- **Prepeg Systems**
 - Unidirectional fiber sheets
 - Multidirectional fiber sheets
 - Mechanically applied fiber tows

- **Precured Systems**
 - Unidirectional sheets
 - Multidirectional grids
 - Shell elements

- **Others**
Flexural Strengthening

- Typical increase in flexural strength is 5 – 40%
 Increases of 160% have been documented
- Positive and negative moment strengthening
- Add strength to RC and PC members
- Reduce crack widths
- Seismic loading
CFRP Strips for Slab Strengthening

- Heavy FRP Reinforcing
- Moderate FRP Reinforcing
- Light FRP Reinforcing
- Unstrengthened RC Beam

Load vs. Strength

Ductility vs. Deflection

Load (KN)

Displacement (cm)

- FRP Strengthened
- Slab w/o cutout
- Slab w/cutout
FRP Flexural Strengthening

Failure Modes

1. Concrete compression failure
2. Yield of rebars
3. Tensile failure of FRP plate
4. Shear failure
5. Peel due to vertical movement at shear crack
6. Anchorage peel/shear in cover zone
7. Peel failure
8. Wide shear/yield crack

ACI Committee 440, “Guide for the Design and Construction ofExternally Bonded FRP Systems for Strengthening Concrete Structures, ACI 440.2R-02, American Concrete Institute, Farmington Hills, Michigan, July 2002
Shear Strengthening

- Increase shear capacity of beams or columns
 Amount of increase depends on section geometry, existing reinforcement, and a variety of additional factors.

- Change failure mode to flexural
 Typically results in a more ductile failure

Shear Strengthening

Shear Strengthening Schemes

- Strips
- Continuous
- Inclined

Completely Wrapped
3-Sided "U-Wrap"
2-Sided

Effectiveness

Confinement Strengthening

- Increase in member axial compressive strength
- Increase in member axial tensile strength
- Enhance the ductility of members subjected to combined axial and bending forces

Mechanism:

- Fibers oriented transverse to the longitudinal axis of the member
- Contribution of any longitudinal fibers to axial strength is negligible
- Results in an increase in the strength of the concrete and in the maximum compressive strain
Confinement Strengthening

ACI Committee 440, "Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, ACI 440.2R-02, American Concrete Institute, Farmington Hills, Michigan, July 2002."
Confinement Strengthening Mechanism

ACI Committee 440, "Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, ACI 440.2R-02, American Concrete Institute, Farmington Hills, Michigan, July 2002
Seismic Retrofitting

Flexure/Shear Failures
Flexural Plastic Hinge Failures
Lap-Splice Failures
CFRP Jacket Shear Retrofit Testing

- Displacement (mm)
- Lateral Load (kips)
- Full
- Push
- Unretrofitted 'As-Built'
- Steel Jacket Retrofit
- Fiber Retrofit

- Displacement (in.)
- Lateral Load (kN)
- Push
- Pull
Strengthening of Walls and Slabs

- Reduction of shear deformations in structural walls
- Retrofitting of shear walls to achieve ductile in-plane behavior
- Repair of damaged walls to increase in-plane ductility
- Retrofitting of out-of-plane unreinforced masonry walls
In-Plane Strengthening of Structural Walls

FRP Overlays for Preservation
Michigan DOT Applications

- **Column Confinement**
 - Most common use (CFRP wraps)
 - *M-39/I-96 Interchange*
 - Vertical cracking of the columns mainly due to slenderness.
 - I-75 Bridge over the Rouge River in Detroit, MI
 - The substructure consists of slag aggregate concrete
 - CFRP used for confinement after the repairs to increase durability of the repair for 30 to 40 years.
 - CFRP applied using wet layup

- **Beam Shear Strengthening**
 - I-696 Plaza Structures in Southfield, MI
 - Side by side box beams developed diagonal tension cracks.
 - CFRP sheets as additional shear reinforcement at beam
Michigan DOT Applications
Michigan DOT Applications
Durability Aspects and Related Issues

- **Durability Issues** *(in order of importance)*
 - Heat
 - Humidity
 - Ultraviolet Radiation
 - Alkalinity
 - Freeze/Thaw
 - Salt Water
 - Diesel Fuel

- **Quality Issues**
 - Voids
 - Delaminations
 - Inclusions
 - Porosity,
 - Fiber/Resin variations

- **Performance Issues**
 - Creep
 - Relaxation
Disadvantages of FRP Composites

- **Cost**
 - High material cost
 - Unfamiliarity can rise cost/bids

- **Durability**
 - There are debatable positions
 - Uncertainty affects the potential for lower long-term cost

- **Material Variability**
 - High dependence on raw materials and manufacturing

- **Design Guidelines**
 - Underdeveloped

- **Repair and Inspection**
 - Reduced experience and available methods

- **Education**
 - More complex than conventional materials
 - Still lacking at the technical and professional level
RATIONAL USE OF FRP COMPOSITES

- The use FRP composites for structural rehabilitation is a proven success and can have a prominent role together with our conventional materials.

- However …

 - Successful implementation of FRP composites requires understanding that design cannot be done following our approach for metals.

 - Design decisions for FRP composites are coupled to a high degree with intricate connections and interrelations between materials, configuration,
Future of FRPs in the Renewal of Civil Infrastructure will depend on...

- The solution of issues such as repair, fire behavior, durability, and environmental concerns.

- The degree of quality control that can be developed and provided during the manufacturing/installation.

- The availability of codes, standards, and guides for design and analysis tools.
Strengthening and Preserving Concrete Bridges using FRP Composites

RIGOBERTO BURGUEÑO, PH.D.
Associate Professor of Structural Engineering

Department of Civil and Environmental Engineering
Michigan State University