Federal Lands Highway Polymer-Modified Emulsion Program

NEPPP Meeting October 21, 2008

Chris Lubbers Sr. Technical Service Engineer BASF Corporation (704) 587-8145 christopher.lubbers@basf.com

Helping Make Products Better[™]

Summary

- Sponsored by FHWA (~2006)
 Administered by NCPP
 G. King Program manager
- Extensive PME literature review completed
 J. Johnston NCPP White paper
- Deliverable Proposed spec for PME's
 Field projects Central Bureau Fed Lands
 Report-only data BASF, PRI, Paragon

PME Specification Targets

- Low temperature recovery method
 Preserves polymer morphology/structure
 Requires Supplier Certification Program
- All residue testing completed on DSR
- Includes performance testing
 - Chip seal
 - Polymer-modified slurry
 - Micro surfacing

Strawman PME Specification Recovery Method + High T Testing

Testing Protocol for 2008 Evaluations					
PROPERTY	TEST METHOD		SPEC	RESULT	
Asphalt Emulsion as Received	It Emulsion as Received				
Standard AASHTO or ASTM tests:	AASHTO M-140 Emulsified Asphalt or AASHTO M-208 Cationic Emulsified Asphalt				
Field Viscosity Test	WYDOT 538.0		Report		
Residue Recovery (24 hours @ 25℃, 24 hours @ 60℃, For ced Draft Oven)					
Frequency Sweep (25 mm, 0.1 – 100 rad/sec, 10% Strain)		AASHTO T 315		Frequency Sweep (G*, δ, etc…)	
Multiple Stress Creep Recovery (100, 1000, 3200 & 10,000Pa)		TP 70-08		% Recovery & Jnr at each stress level	
Frequency Sweep (25 mm, 0.1 – 100 rad/sec, 10% Strain)	HTG	AASHTO T 315	Report	Frequency Sweep (G*, δ, etc…)	
Multiple Stress Creep Recovery (100, 1000, 3200 & 10,000Pa)	- 6°C	TP 70-08		% Recovery & Jnr at each stress level	
Frequency Sweep (25 mm, 0.1 – 100 rad/sec, 10% Strain)	HTG	AASHTO T 315		Frequency Sweep (G*, δ, etc)	
Multiple Stress Creep Recovery (100, 1000, 3200 & 10,000Pa)	-12℃	TP 70-08		% Recovery & Jnr at each stress level	
Test Strain Sweep, 1 – 50% strain, 10 rad/s	25°C			 Resistance to Deformation: G*/sind @ 12% Strain Strain Tolerance: Strain Level at which G* < 90% G* initial Failure Properties: Strain Level at which G* <50% G* initial 	

Strawman PME Specification Intermediate and Low T Testing

Pressure Aging Residue (100℃, 300 psi, 20 hours) R 28						
(PAV run on residue obtained by Forced Draft Oven Method run in PAV pan)						
Frequency Sweep (25 mm, 0.1 – 100 rad/sec,1% Strain)	HTG*	AASHTO T 315		Frequency Sweep (G*, δ, etc)		
Multiple Stress Creep Recovery (100, 1000, 3200 & 10,000Pa)		TP 70-08		% Recovery & Jnr at each stress level		
Frequency Sweep (25 mm, 0.1 – 100 rad/sec,1% Strain)	HTG	AASHTO T 315		Frequency Sweep (G*, δ, etc)		
Multiple Stress Creep Recovery (100, 1000, 3200 & 10,000Pa)	- 6°C	TP 70-08		% Recovery & Jnr at each stress level		
Frequency Sweep (25 mm, 0.1 – 100 rad/sec,1% Strain)	HTG	AASHTO T 315	Report	Frequency Sweep (G*, δ, etc)		
Multiple Stress Creep Recovery (100, 1000, 3200 & 10,000Pa)	-12℃	TP 70-08		% Recovery & Jnr at each stress level		
Frequency Sweep (8 mm, 0.1-100 rad/sec, % Strain (TBD))	30	AASHTO T 315		Frequency Sweep (G*, δ, etc…)		
Frequency Sweep (8 mm, 0.1-100 rad/sec, % Strain (TBD))	10℃			Frequency Sweep (G*, δ, etc…)		
Frequency Sweep (8 mm, 0.1-100 rad/sec, % Strain (TBD))	20℃			Frequency Sweep (G*, δ, etc…)		
Test Strain Sweep, 1 – 50% strain, 10 rad/s	25ºC			 Resistance to Deformation: G*/sind @ 12% Strain Strain Tolerance: Strain Level at which G* < 90% G* initial Failure Properties: Strain Level at which G* <50% G* initial 		
Bending Beam Rheometer	-12℃ + -18℃	AASHTO T 313		Stiffness + m-value		

Strawman PME Specification Performance Testing

Performance tests for Chip Seals					
Sweep Test	Modified ASTM D-7000		Report		
Performance tests for Polymer Modi	fied Slurry	Seals and	d Micro-Surfacing		
Recommended Performance Guidelines for Emulsified Asphalt Slurry Seal Surfaces		ISSA A105	ISSA		
Recommended Performance Guidelines for Polymer Modified Micro- Surfacing		ISSA A143	ISSA		
Tests recommended by Caltrans Slurry/Micro-Surface Mix D Project /Contract 65A0151	esign Procedure	TBD			

* High Temperature Performance Grade as selected for local climate (LTPPBind version 3.1)

Central Bureau Fed Lands Projects Strawman – Report-Only Data

Project	Date	System(s)
Utah Parks	September, 2008	Chip Seal - CRS-2P (SBR)
		Micro Surfacing (NRL, Ralumac)
Dinosaur Natl. Monument	September, 2008	Chip Seal - PASS - CRS-2P (Latex)
Death Valley	November, 2008	Chip Seal (SBR, SBS?)
Crater Lake	Spring 2009	Chip Seal (TBD)

Testing Labs (Third Party + Industry):
PRI Asphalt Technologies, Inc (Tampa, FL)
Paragon Technical Services, Inc. (Richland, MS)
BASF Corporation (Charlotte, NC)

Emulsions 101 Polymer-Modified Emulsions for Surface Treatments

> NEPPP Meeting October 21, 2008

Chris Lubbers Sr. Technical Service Engineer BASF Corporation (704) 587-8145 christopher.lubbers@basf.com

Helping Make Products Better[™]

Outline

- Asphalt emulsion primer
- What are polymers?
- Why polymers for asphalt emulsions?
- Modification of asphalt emulsions
- Polymer networks in asphalt emulsions
- Impact on performance + properties

Asphalt Emulsions - Formulation

- Components
 - Asphalt
 - Surfactant (surface active agents, emulsifiers)
 - Water
 - Mechanical energy (colloid mill)

Other Ingredients

- Additives (calcium chloride, cutback agents,...)
- Modifiers Polymers

Asphalt Emulsions – Component Distribution

Dispersion of asphalt in water

- Water continuous phase
- Asphalt non-continuous or dispersed phase
 - -Stabilized by surfactant

Surfactant —>emulsion class.

- Cationic
- Anionic
- Nonionic

Asphalt Droplets

What are Polymers?

Comprised of many small molecules

- Poly = many
- Monomers = small molecules or repeat units

Monomers chemically react — larger molecules

- Water-based polymers latex form (SBR)
- Solvent-based polymers pellets, bale (SB-,SBS)

Properties are determined by:

- Types and sequence of monomers
- Molecular weight

Polymer Types for Asphalt Mod.

- SBR Latex Chip Seals, Slurry and Micro Surfacing
- SB/SBS Chip Seals
- Natural Rubber Latex Ralumac (Micro Surfacing)
- Other Neoprene, EVA, GTR (REAS), Fibers

Typical Monomers

Н Η Н Η Н Ĥ Н Η Η F **Butadiene** CH₃ Η Η Η **Styrene** Isoprene Η (NR) Η

Η

Viscoelastic Behavior Cured Latex Modified Asphalt Emulsion

• $G^* = f(T) = deform. resist.$

The Chemical Company

Asphalt

- High G* at low T brittle
- Low G* at high T viscous
- △ $G^*(80^{\circ}C 20^{\circ}C) = 1000x$

SBR Polymer

- Lower G* at low T flexible
- Higher G* at high T elastic
- $\Delta G^*(80^{\circ}C 20^{\circ}C) = 10x$

Polymer Modification of Asphalt Emulsions

Emulsify polymer modified asphalt

- "Pre-modified" emulsion
- Polymers SBS, SB-

Higher mod. asphalt viscosity

- higher asphalt + mill temp.
- Exit temp. > 100°C
- Heat exchanger, back press.
- Polymer inside asphalt droplet

Polymer Modification of Asphalt Emulsions

Add latex external to asphalt

- Methods
 - soap batching
 - co-milling asphalt line
 - co-milling soap line
- Polymers SBR, NR latex
- Lower asphalt process T
- No special mill, handling
- Polymer in water phase

Continuous polymer film formation on curing

Latex Polymer-Modified Asphalt Emulsion

Optimum for Fine Polymer Network Formation

The Chemical Company

Chip Seal – Field Application

Chip Seal Surface Treatment

CRS-2 vs.CRS-2P(LM) – Physical Props.

	Test Method	CRS-2	CRS-2P
R&B Softening Point (°F)	ASTM D 36	115	128
Ductility (4°C, cm)	ASTM D 113	21	150+
Elastic Recovery (10°C, %)	AASHTO T 301	5	60

3 wt.% SBR latex polymer (on asphalt)

Residue

ASTM D 6934 - Oven evaporation at 163°C

Polymer

Raises SP, drastically increases ductility and ER

Sweep Testing – CRS-2P vs CRS-2 ASTM D7000 - 04

Chip Seal with Latex Modified CRS

Latex polymers accumulate at optimum location
 Act to glue aggregate together!!!

Curing of CRS-2LM Emulsion

Water in asphalt emulsion wicks the aggregate surface
 Order of migration = Water, latex particles, asphalt droplets

Latex Polymer Distribution – Unstable CRS-2L Emulsion

The Chemical Company

Latex particles migrate together with water???
Delymor rich regions around aggregate – NO

Polymer rich regions around aggregate = NO

Latex Polymer Distribution – Stable CRS-2L Emulsion

The Chemical Company

Latex particles migrate together with water!
 Polymer rich regions around aggregate = YES

Micro Surfacing Operation

Cohesion Development<1 hr

Micro Surfacing – High ADT + ESAL's

Paved in Oct. 2001 Photo from Sept. 2003

Micro Surfacing Mix Formulation

Blade Coating Operation

- 2 m wide + <1 cm thick
- 4-5 km/hour
- Traffic within 1 hour
- Latex Polymer Binds
 - Asphalt
 - Fines
 - to Aggregates

Micro Surfacing – Polymer Morphology Field Application

Texas State Highway 84

- Near Waco,TX
- Paved in 1998
- Samples taken in 2001

Cured Latex Polymer Network

The Chemical Company

Micro Surfacing

Latex Foam

Wet Track Abrasion Loss – ISSA TB-100

SBR latex polymer

50% reduction in loss

one hour soak

67% reduction in loss

six day soak

Surface of mix

toughermore abrasion res.

Adhesion + water resistance

improved

Micro Surfacing Residue – SHRP Grade

30 days Cured 82 90 ပိ Emulsion+Cement+SBR Phase Angle at G*sin(δ)=1kPa, degree Latex Rutting resistance temperature, 85 76 80 Emulsion-Cement 75 \bigcirc 70 70 -**Emulsion Only** 65 64 60 10 20 30 40 50 0 Emulsion + Cement +3% Latex Curing Time, day only

Summary – Polymer Modified Emulsions

Chip seals

- Early and long term chip retention
- High temperature strength
- Low temperature flexibility

Slurry seal and micro surfacing

- Improved mix cohesion
- Reduction in abrasion loss of aggregate
- Resistance to deformation