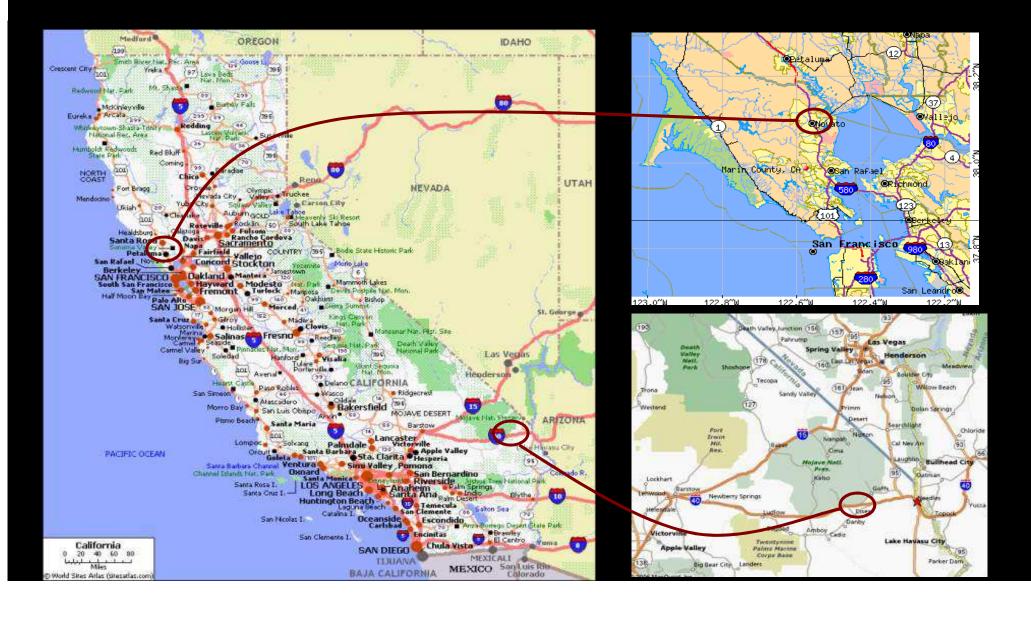
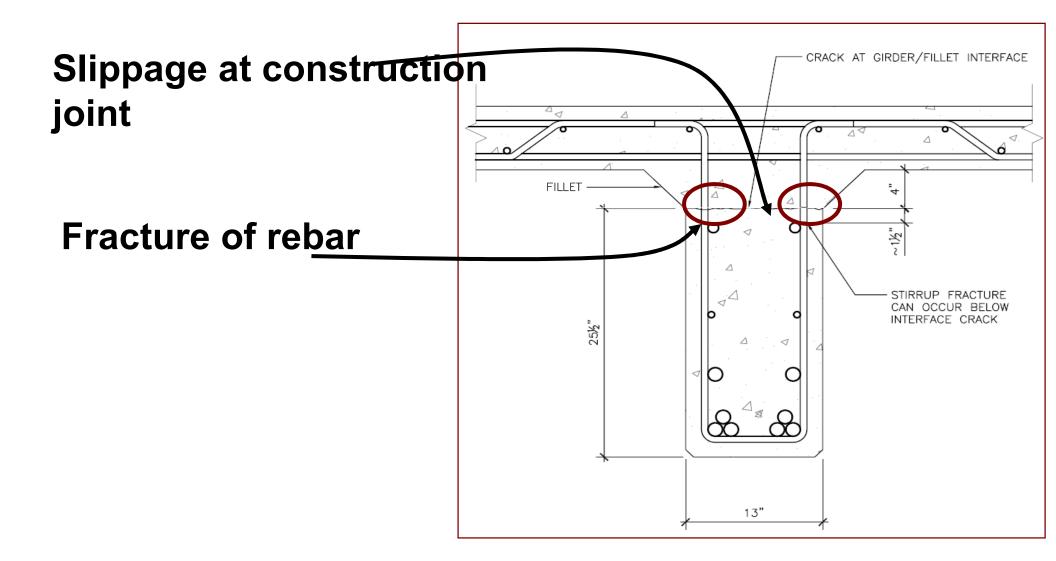


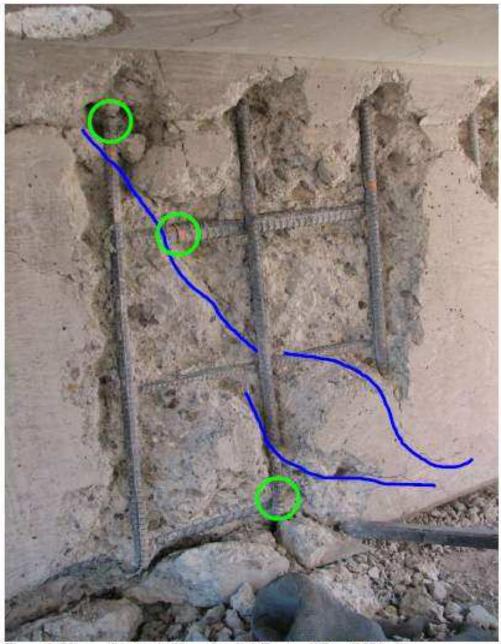
Mitigation of Girder Deck Construction Joint Slippage in T-beam and Box Girder Bridges


Anthony Gugino WBPP meeting Sacramento, CA December, 2010

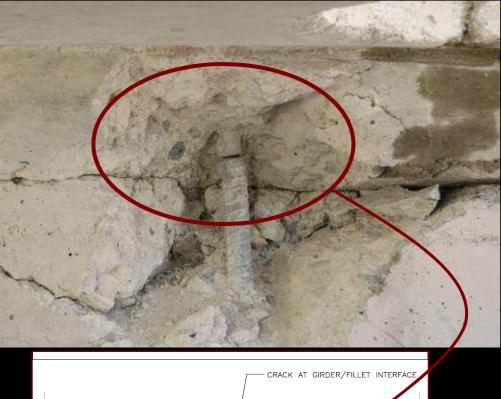
What is this Presentation

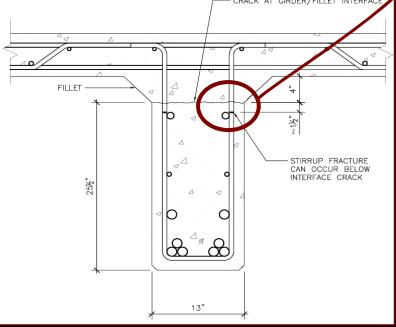
- Since 2006 we have found 21 state bridges with slippage at the girder deck construction joint
 - 20 bridges located at Route 40 in the So Cal desert
 - one bridge located at highway 101 in SF Bay Area
- This presentation discusses
 - probable causes
 - methods of repair
 - changes in design specifications and construction procedures




Background- Rte 40 T-Beam Bridges

- In 2006, 12 Cast in Place T-beam girder bridges on Rte 40 experienced <u>deck-girder interface</u> joint failure
- 5 Girder 3 interior girders had extensive interface cracking and movement the exterior girders were OK
- Interface cracks initiated at mid span, moved along the length and culminated in <u>shear failure and fracture of</u> <u>shear</u> and other reinforcement.
- All 12 bridges built under the same contract in 1973
- All 12 bridges replaced under emergency contract





T-Beam multi span continuous - 38 to 55 foot spans No. of Girders: 5 Width: 42 ft Girder depth: 3 ft , Width: 13 inches Girder spacing: 8 ft 6 in (6 ft 10) Deck thickness: 6 ½ in (6 1/8 in) Stem width: 13 inches

Fracture of shear Reinforcing

Investigation of T-beam Bridges

- Hired Wiss, Janney, Elstner Associates, Inc. (WJE) to investigate
 - Performed inspections took concrete rebar samples just prior to demolition
 - Performed material tests
 - Performed literature search
 - Performed detailed modeling of const joint
 - Reviewed design of bridge

WJE report – conclusions

- Primary Factors
 - Inadequate construction joint roughness
 - Design Specs construction joint shear capacity dependent on joint roughness – joint fatigue
 - Inadequate quantity of joint/ shear reinforcement
 - Truck load intensity and frequency (high stress-high cycle)
 - Deck stiffness Concrete Modulus 30% lower severe deck cracking

Construction Joint Roughness

Joint Horizontal Shear Capacity AASHTO LFD

- (b) When minimum ties are provided in accordance with paragraph 8.16.6.5.5, and contact surface is clean and free of laitance, but not intentionally roughened, shear strength V_{nh} shall not be taken greater than 80b_vd, in pounds.
- (c) When minimum ties are provided in accordance with paragraph 8.16.6.5.5, and contact surface is clean, free of laitance, and intentionally roughened to a full amplitude of approximately 1/4 inch, shear strength V_{nh} shall not be taken greater than $350b_{y}d_{y}$, in pounds.

Deck Cracking Route 40 T- Beam Bridges

WJE Report – Conclusions

Secondary factors

- Alkali silica reactivity (ASR) minor and insignificant
- Transverse moments at the joints (not a design parameter)

Background - Box Girder Bridges

- Concerns for I-40 Box Girder Bridges
 - "Lost-deck" forms stripped out of 10 <u>RC box girder</u> bridges built under the same contract
 - Girder-Deck interface cracks found in 8 of these box girder bridges
 - Failure had not reached the same "critical stage" as T beam bridges (not a diagonal shear crack yet)

Two of the Eight Box Girder Bridges with Deck/Girder Const Joint Cracks

Clipper Wash L/R

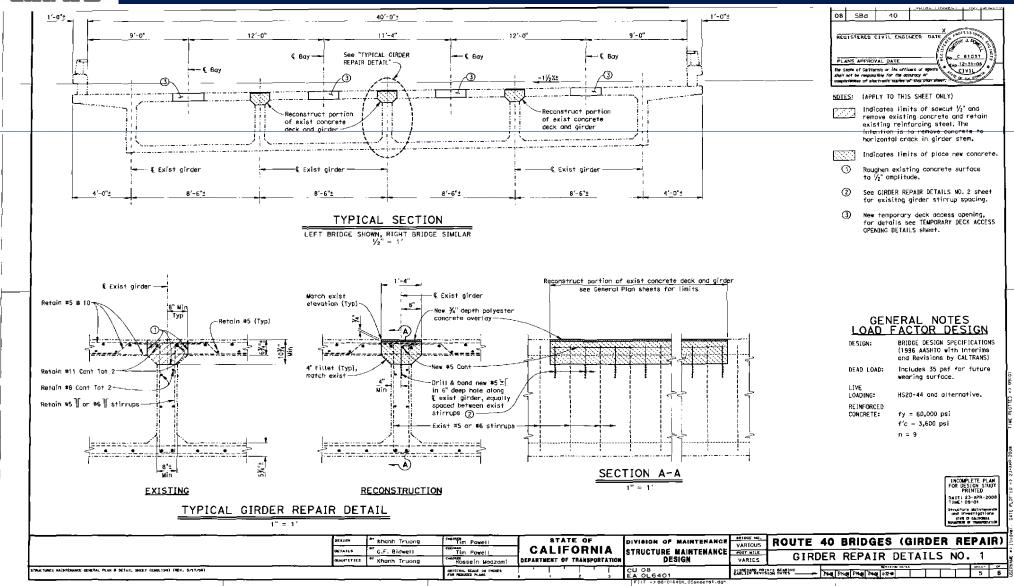
Rojo Wash, 54 0894L/R

- Single span and multi –span continuous
 Conventionally reinforced
- •5 girder
- •70 foot typical span length

Box Girder Problems

- Girder cracking similar to T beam bridges
 - Begins at 1/3 to1/2 span and progresses towards supports
 - Longitudinal Slippage up to 1/32" along joint
 - Cracking only in middle 3 girders
 - Crack lengths vary from 5 feet to 25 feet
 - Moderate to severe deck cracking
- Slippage did not cause fracture of rebar
 - Live load deflections seemed normal

Box Girder Repair


- Hydro Demo Deck above girder construction joint and re-pour Concrete
- Must stage concrete removal so as to not shore bridge
- Relative costs (for 8 bridges total)
 - Replace bridges
 - Re-deck Bridges
 - Repair slipping joint

\$23,000,000 \$1<u>1.5 million</u>

\$2.0 million

Box Girder Bridge Repair

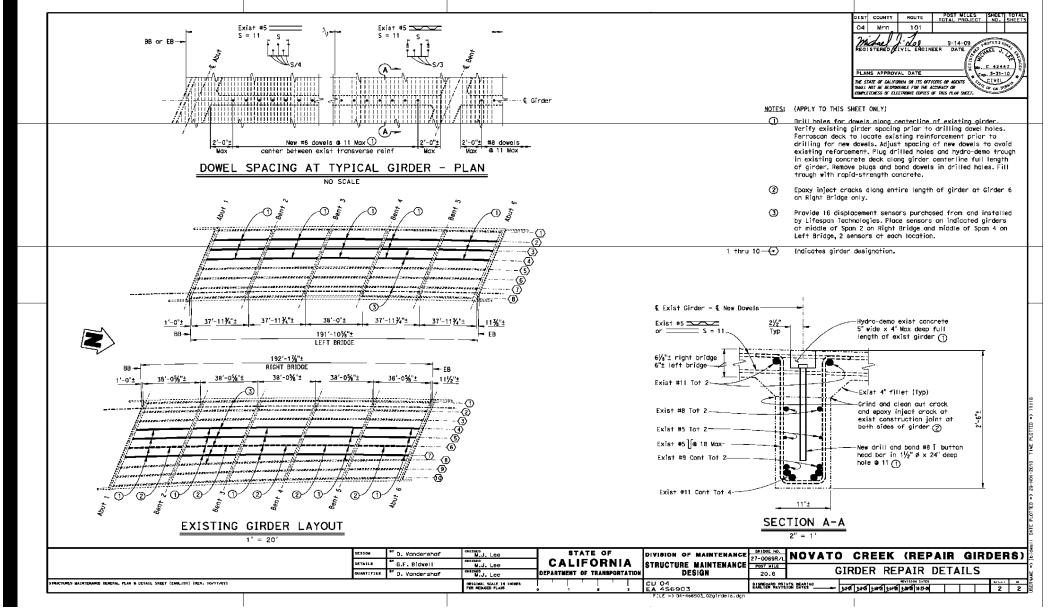
Staggered removal/replacement of deck concrete over girders so shoring of the bridge is not required

Hydro Demo leaves very rough surface for good construction joint bond

Novato Creek

- Multi girder T-beam left and right bridge
- Highway 101 Marin County
- 5 span continuous 38 foot spans
- Some slippage on interior girders

 Right Bridge 4 of 10 girder defective
 Left Bridge 3 of 8 girders defective
- Under truck lanes

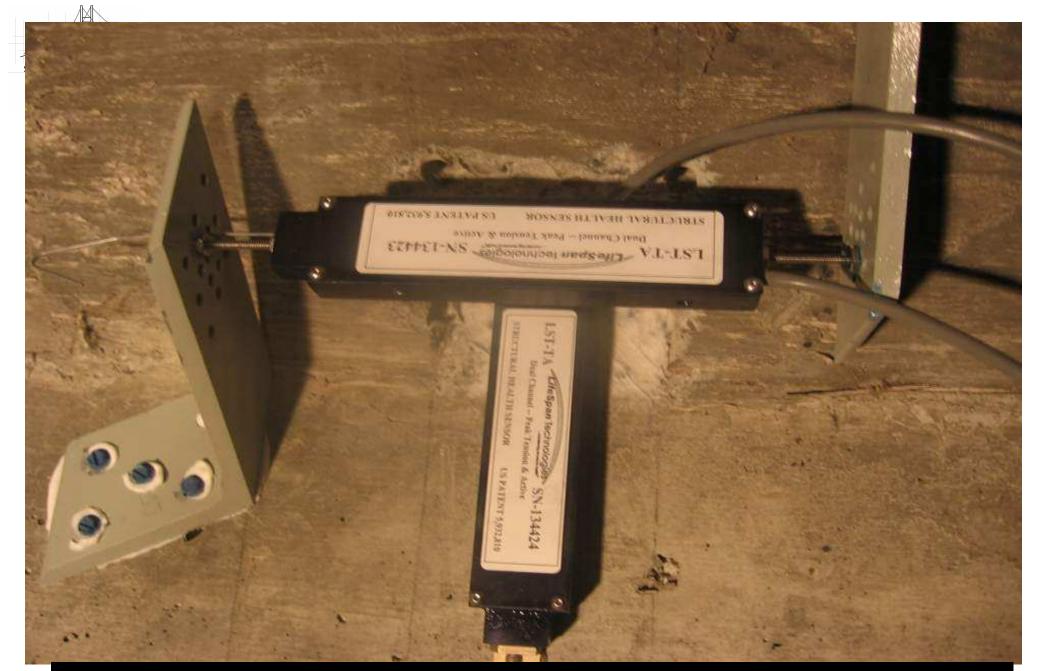


Novato Creek Repair November 2009

- Drill and Bond new # 8 shear reinforcing headed bars 11 inches on center
- Epoxy inject one (worst) girder
- Install displacement devices to monitor effectiveness of repair over time
- This may not be a permanent repair
- This method of repair works well under traffic

Construction joint cracking turning down into shear crack

28 26 30 31 32 33 34 15 36 37 38 38



Epoxy Injection Girder 6 right bridge

DECK CRACKING NOVATO CREEK

Instrumentation measure displacements in 3 directions

Right Bridge over Novato Creek on Route 101 (27-0089R)											
Peak Relative Horizontal Displacements (Microns)						Peak Relative Vertical Displacements (Microns)					
Girder 4	Girder 5	Girder 6	Girder 7	Girder 8 (Control)	Duration (Days)	Girder 4	Girder 5	Girder 6	Girder 7	Girder 8 (Control)	Duration (Days)
238	286	479	626	180	19	150	111	30	100	23	19
3	51	2	3	0	1	11	17	5	32	0	1
3	51	2	3	8	27	19	31	11	45	5	27
3	56	2	33	26	90	27	33	19	48	5	90
5	59	2	33	26	140	27	33	19	48	5	140
5	59	2	33	26	257	27	33	19	48	5	257

So far repairs have been effective. Dowels have significantly reduced and maintained relative displacement between girder and deck.

Design Construction Changes

- Intentionally Roughen Construction Joint
- Shear steel maximum spacing 18 inches

Lessons Learned

- Bridge Preservation begins at Design and Construction
- Design practices should be consistent with construction practices
- Problems do not always occur where we expect them to occur