Element Guide Manual and Improved Bridge Management

Paul Jensen Montana Department of Transportation pjensen@mt.gov 406.444.9245

Presentation Topics

Element Implementation Plan
 Development of Elements

 National Bridge Elements
 Bridge Management Elements
 Agency Elements

 Development of Bridge Preservation With A Bridge Management System

New Element Process

AASHTO BRIDGE ELEMENT INSPECTION GUIDE MANUAL

Element Implementation Plan

SCOBS T-18 Meeting Last Week
 Development of Element Migration Software
 Update the Element-to-NBI Translator
 Update BRIDGEWare Pontis Inspection Module
 Develop Training on New Elements
 AASHTO Publications Release Quarter 1 2011
 Pontis RFP for Contractor for Inspection Module
 Migration Software to be Public Domain

Significant Changes

 Four Condition States For All Elements.
 Follow – Good, Fair, Poor, Severe Convention.
 Wearing Surfaces Separated From Deck Element.
 Deck Element Units Changed To Square Feet.
 Steel Protective Coatings Separated From Steel.
 All Smart Flags Have Been Incorporated Into Condition State Language.

Element Presentation STAN AN AN AN ANY ANY

2010 Midwest Bridge P

AASHTO Bridge Element Inspection Manual

Description	
This element defines all reinforced concrete	idge
deck/slab regardless of the wearing surf protection systems used.	or

Element # 12 38 Reinforced Concrete Deck Slab Square Feet (Square Meters) National Bridge Elements

4

Quantity Calculation The quantity for this element shoul actude the area of the deck slab from edge to edge including any médian areas and accounting for any flares or imps present.

Condition State Definitions

Defect	Condition State 1	Condition State 2	Condition State 3	Condition State 4
Cracking	None to hairline	Narrow size and/or density	Medium size and or density	T 1
Spalis / Delaminations Patched Areas	None	Moderate spall or patch areas that are	Severe spall or patched area showing distress	The condition warrants a structural review to determine the
Efflorescence	None	M cerate without	Severe with rust staining	strength or serviceability of the element or
Load Capacity	No reduction	No reduction	No reduction	bridge.

Feasible Actions

Condition State 1	Condition State 2	Condition State 3	Condition State 4
Do Nothing Protect	Do Nothing Protect Pair	Do Nothing Protect Repair Rehab	De Nothing Protect Raplace

Element Commentary

The deck/slab evaluation is three dimensional in nature with the defects observed on top and/or bottom surface being captured using the defined condition states. Deck Slab top or bottom surfaces that are not visible for inspection shall be assessed based on the available wisible surface. If both top and bottom surfaces are not visible, the condition shall be assessed based on destructive, non-destructive testing or indicators in the materials covering the surfaces.

Element Defini	itions			
Defect	Hairline - Mi	Narrow-Moderate	Medium-Severe	
Cracking (1.6 mm)		0.0625 - 0.125 inches (1.6 - 3.2 mm)	>0.125 inches (3.2 mm)	
Spalls/ Delaminations	NA	Spall less than 1 inch (25 mm) deep or less than f es in diam	Spall greater than 1 inch (25 mm) deep or greater than 6 inches in diameter or exposed reber	
Cracking Density	Spacing Greater than 3.0 feet (0.33 m)	Spaci 1.0 - 3.0 feet (0 - 1.0 m)	Spacing of less than 1 foot (0.33 m)	
Efflorescence	NA	Surface white without build-up or leaching	Heavy build-up with rust staining	

Element Presentation

Description

This element defines all reinforced concrete bridge deck/slab regardless of the wearing surface or protection systems used. Element # 12/38 Reinforced Concrete Deck/Slab Square Feet (Square Meters) National Bridge Elements

Quantity Calculation

The quantity for this element should include the area of the deck/slab from edge to edge including any median reas and accounting for any flares or ramps present.

Condition State Definitions

Defect	Condition State 1	Condition State 2	Condition State 3	Condition State 4
Cracking	None to hairline	Narrow size and/or density	Medium size and/or density	
Spalls / Delaminations/ Patched Areas	None	Moderate spall or patch areas that are sound	Severe spall or patched area showing distress	The condition warrants a structural review to determine the
Efflorescence	None	Moderate without rust	Severe with rust staining	strength or serviceability of the element or
Load Capacity	No reduction	No reduction	No reduction	bridge.

Element Presentation

Feasible Actions

Condition State 1	Condition State 2	Condition State 3	Condition State 4
Do Nothing	Do Nothing	Do Nothing	Do Nothing
Protect	Protect	Protect	Protect
	Repair	Repair Rehab	Replace

Element Commentary

The deck/slab evaluation is three dimensional in nature with the defects observed on top and/or bottom surface being captured using the defined condition states. Deck/Slab top or bottom surfaces that are not visible for inspection shall be assessed based on the available visible surface. If both top and bottom surfaces are not visible, the condition shall be assessed based on destructive, non-destructive testing or indicators in the materials covering the surfaces.

Element Definitions

Defect	Minor	Moderate	Severe
Cracking	< 0.02 inches	0.02 – 0.08 inches	>0.08 inches
Clacking	(0.5 mm)	(0.5 - 2.0 mm)	(2.0 mm)
Cracking Density	N/A	1.0 and 3.0 feet apart (0.33 – 1.0 m)	< 1 foot (0.33 m)
Efflorescence	NA	Surface white without build-up or leaching	Heavy build-up with rust staining

National Bridge Elements (NBE's)

 Provide The Minimum Element Set To Define Safety And Load Capacity Of Bridges.
 Includes All Primary Structural Elements.
 Decks, Slabs, Girders, Columns, Abutments Etc.
 Condition State Language Is Not Editable.
 Elements Intended For NBI Condition Assessment.
 Minimal Implementation Level For Non-element

Inspection Agencies.

Bridge Management Elements (BME's)

Elements Define Secondary Bridge Components. Joints, Wearing Surfaces, Protective Coatings, Bearings, Barrier Rails Etc. Provide And Added Level Of Condition Assessment For Agencies Utilizing Bridge Management Systems. Can Be Extended To Capture Other Components As Desired By The Agency. Can Influence Deterioration Modeling.

Agency Elements

Require Fours States Following General efinition. May Be Sub-sets Of NBE's Or BME's. Sub-sets Of NBE's Require Same Condition State Language. Can Be Sub-sets Of BME's. May Be Unrelated To Any Defined Element. May Be Subject To Deterioration Modeling Or Not. Allows The Incorporation Of Non-bridge Assets.

Agency Element Beam Ends/Middle Section Sub-set of NBE Must Use NBE Language Must Associate Element With NBE Parent. Reporting by Role-up of Two Elements to One Deterioration On Different Paths

Steel (107) Element Language

Defect	Condition State 1	Condition State 2	Condition State 3	Condition State 4
Corrosion	None	Freckled Rust	Section Loss	
Cracking/ Fatigue	None	Arrested Cracks Exist	Moderate Exists	The condition is beyond the limits established in condition state
Connections	Sound	Sound	Isolated Failures	three (3) and/or warrants a structural review to
Load Capacity	No Reduction	No Reduction	No Reduction	determine the strength or serviceability of the element or bridge.

Steel (187) Element Language

Defect	Condition State 1	Condition State 2	Condition State 3	Condition State 4
Corrosion	None	Freckled Rust	Section Loss	
Cracking/ Fatigue	None	Arrested Cracks Exist	Moderate Exists	The condition is beyond the limits established in condition state
Connections	Sound	Sound	Isolated Failures	three (3) and/or warrants a structural review to
Load Capacity	No Reduction	No Reduction	No Reduction	determine the strength or serviceability of the element or bridge.

Beam End/Middle Section NBE/BME No New BMS Elements

Painted Steel Girder				Fatigue	Crack Section Loss	
	5	0 Feet				
Element	Quantity	State 1	State 2	State 3	State 4	
Painted Steel Girder	50 Ft	48 ft		1 ft	1 ft	NB
Fatigue Flag	1 ft				1 ft	
Section Loss Flag	1 ft			1 ft		BM

Beam End Example

Į	Painted Steel	Fatigue Cr a ck Los				
	2 Feet					2 Feet
			50 Feet		-	
	Element	Quantity	State 1	State 2	State 3	State 4
	107 Steel Girder	46 ft	45 ft			1 ft
101	Fatigue Flag (girder)	1 ft				1 ft
5	187 Steel Girder Ends	4 ft			1 ft	
CAL NO	Section Loss Flag (girder)	1 ft			1 ft	

Concrete Decks

	Defect	Condition State 1	Condition State 2	Condition State 3	Condition State 4
1	Cracking	None to hairline	Narrow size and/or density	Medium size and/or density	The condition is beyond the limits
581	Spalls / Delaminations/ Patched Areas	None	Moderate spall or patch areas that are sound	Severe spall or patched area showing distress	established in condition state three (3) and/or
	Efflorescence	None	Moderate without rust	Severe with rust staining	warrants a structural review to determine the
	Load Capacity	No reduction	No reduction	No reduction	strength or serviceability of the element or bridge.
				1	

Deck
 Protective
 System 521

Element 12

Deck

				AR I			
	Defect	Condition State 1	Condition State 2	Condition State 3	Condition State 4		
	Wear	None	Underlying Concrete Not Exposed. Coating Showing Wears From UV Exposure. Friction Course Missing.	Underlying Concrete Is Not Exposed. Thickness Of The Coating Is Reduced.	Underlying Concrete Exposed. Treated Cracks Are Exposed The protective		
	Effectiveness	Good condition, fully effective	Fair condition, substantially effective	Poor condition, limited effectiveness	The protective system has failed or is non- operational		

Elements Generic

General Language For Element Development

Defect	Condition State 1	Condition State 2	Condition State 3	Condition State 4
Condition	Good Condition	Fair Condition	Poor Condition	The element condition is severe or is non- operational

General Language For Protective System Development

Defect	Condition State 1	Condition State 2	Condition State 3	Condition State 4
Effectiveness	Good condition, fully effective	Fair condition, substantially effective	Poor condition, limited effectiveness	The protective system has failed or is non- operational

New Element Conclusion

NBE's Must Have Same Language
Subsets Must Rollup
BME's Must Have GFPS Language
Must Consider Protective VS Other Systems
Model Or Not In the Bridge Management System

Beyond the Elements

DEVELOPMENT OF BRIDGE PRESERVATION WITH A BRIDGE MANAGEMENT SYSTEM

FHWA's

Guidance for Approval Systematic Process

- Define How The Needs Are Identified.
- Outline How The Needs Are Prioritized And Programmed.
- Define The Outcome Or Goal, Including Resources Necessary & Timeframes To Reach The Outcome/Goal.
- Demonstrate That The Proposed Activity Is A Cost-effective Means Of Extending The Service Life Of A Bridge. Dedicate Resources Necessary To Reach Defined Outcome/Goal.
- Annually Track, Evaluate, And Report On Progress In Reaching Outcome/Goal And Adjust Resources Accordingly.

Three Track Nominations Reactionary Maintenance (by Bridge)

Emergency Repairs

- Limited Contract Repairs
- DOT In-house Repairs

Preventive Maintenance (by Corridor)

- Contract Deck Sealing
- Contract Surface Rehab

Rehab, Replacement (by Bridge - Capital)

- Contract Work
- Tied to State Transportation Improvement Plan (STIP)

Need

Determine Capital Program
 Determine Preventive Maintenance Program
 Determine Reactionary Maintenance Activities

 Develop Performance Measurements
 Develop Reporting System to Other Business Units

Project Need Evaluation

NBI Condition

FAIR Condition SR = 72

Synthesized Condition

HI=75

Element Condition 7 Total Bananas 4 Good 3 Rotten HI=57

NBI Work Item – Rehabilitate All Of The Bananas – Cost \$3.00 Synthesized Element Work Item – Do Nothing Element Work Item – Replace Only The Rotten Bananas – Cost \$1.28

Variance with the NBI Evaluation and Element Evaluation: Erroneous Statement Condition and Need

Bridge Management Collecting NBI Data Since 1980 **Collecting AASHTO CoRe Data Since 1995** CoRe : Commonly Recognized Elements All Data Warehoused in Oracle Database Data Structure Uses AASHTOWare Pontis Schema Data Analysis Uses Pontis and "Home Grown" **Applications**

Historical Review (NBI)
Breakdown of NBI Data
Deck, Superstructure and Substructure
Snapshot Past 25, 10, 5, 1 Years
Review for Trends and Limit the Program Scope

Deck	<u>1980</u>	<u>1995</u>	2000	<u>2004</u>
Worse than 5	1.8%	0.9%	0.8%	1.3%
Equal to 5	2.9%	3.6%	4.3%	4.8%
Better than 5	95.2%	95.2%	84.1%	91.4%
<u>Superstructure</u>				
Worse than 5	2.3%	1.6%	1.1%	0.4%
Equal to 5	3.1%	4.3%	4.3%	6.1%
Better than 5	94.7%	94.0%	83.8%	93.5%
<u>Substructure</u>				
Worse than 5	3.3%	2.6%	2.6%	1.9%
Equal to 5	3.9%	4.5%	6.3%	3.6%
Better than 5	92.9%	92.9%	91.1%	89.5%
2010 Mic	dwest Bridge Pre	servation Par	tnership Meetir	ng han h

Overall Conclusion

 Need To Develop A Long Term Preventive Maintenance Strategy
 Decks And Associated Elements As A Focus
 Use Deterioration Models From Pontis
 Develop A Performance Measure For The Constrained Data

Deck Performance Measure Best Practice Is the Health Index Dose Not Account for Smart Flags Range of Values Small for Large Change in Condition Calculated by Equation 4.2.1 of Pontis Technical Manual (Page 4-9)

Health Index = $\frac{\sum_{n} \text{Element Cost * Element Quantity * Percent Condition State}}{\sum_{n} \text{Element Cost * Total Element Quantity}} * 100$

Deck Performance Measure Montana Modified

Used Core Computation
Included Smart Flags in Calculation
Used Grouping From NBI Translator
Smart Flag Cost From Total Cost of Element Group (Deck, Bearings, Joints, Approach Slabs)
Limited One Smart Flag by Span Group

 $\frac{\sum_{e} \text{Cost} * \text{Qty} * \text{Pct in State}}{\sum_{e} \text{Cost} * \text{Qty}} + (\sum_{e} \text{Cost} * \text{Qty}) * \text{Qty} * \text{Pct in State})}{\sum_{e} \text{Cost} * \text{Qty}} + (\sum_{e} \text{Cost} * \text{Qty}) * \text{Qty})$

2010 Midwest Bridge Preservation Partnership Meeting

HImt

Reporting

Development of "Indifference Curve"

Report

By Bridge (by Year)

Recommended Action

Benefit / Cost Ratio

►Hi_{mt}

Categorize by Good, Watch, Bad

By Route (Break on County and Year)

Average Hi_{mt}

Network Indifference Curve

Network Benefit / Cost Ratio

Network Cost to Improve

Count by Good, Watch, Bad Groupings

Groupings

Good Condition
Himt Greater Than 70
No Defects
Match
Himt Between 50 and 69
Bridges Have Defects That Need Monitoring
Bad
Himt Less Than 50

 Filmt Less Than 50
 Defects Needing Corrective Action

Check for Corridor Improvement

Input Projects, Scopes and Cost Into Pontis
Run the Scenario With Proposed Budgets
Compare Network Level Results
Fulfill Performance Goals?
Budgets Adequate for Scope?
Peaks and Valleys of Needs Smooth Out?

Development Results

XIXIXIAN	Do Nothing		Unconstrained Budget		Maximum \$1.0 Million Annual Budget		Maximum \$500 Thousand Annual Budget	
Year	Need to Correct	Deck Health Index	Accumulative Expenditures	Deck Health Index	Accumulative Expenditures	Deck Health Index	Accumulative Expenditures	Deck Health Index
2008	\$1,485,733	84.9	\$1,485,733	93.7	\$437,341	88.9	\$114,927	85.7
2018	\$6,936,027	55.9	\$3,590,750	81.1	\$1,798,384	74.3	\$1,233,546	70.5
2028	\$12,276,500	34.5	\$7,093,280	73.5	\$4,453,960	70.5	\$1,202,671	59.4
2038	\$24,551,826	9.2	\$10,910,317	71.4	\$6,279,637	56.6	\$1,260,291	43.9
2048	\$35,136,686	0.7	\$17,972,034	88.3	\$11,744,147	70.1	\$2,439,881	41.3
2058	\$35,696,378	0.4	\$22,354,797	82.8	\$13,603,630	64.3	\$1,693,066	34.1

Field Review and Set Scope

 Rank Corridors From Worst to Best
 Review Recommended Action From Pontis With Field Observations Kick Some Rocks
 Develop Scopes for Each Bridge
 Detailed Estimate for Each Bridge in the Corridor

Conclusion

Developed a PM Program
Used Pontis Derived Data
Used Home-grown Computer Programs and Reporting
Extended the Pontis Database
Added Value to the Initial Pontis Product
Follow FHWA's Guide for Systematic Process
Implement PM Program

Thank For Your Time

Stat and the state of the state of the state of the

Paul Jensen Montana Department of Transportation

Email : pjensen@mt.gov