Slurry/Microsurface - Mix Design Procedure

UGRO

Jim Moulthrop, P.E. (PA, AZ)

Outline

Introduction **Project objective and review Preliminary results Phase II activities Mix Design characteristics Automated tests Proposed mix design Strawman specification** What's next

Introduction

- Slurry seals and Microsurfacing wide-use as preservation treatments
- Extend pavement's life
- Becoming more and more popular as agencies incorporate them into pavement preservation strategies
- Currently, designing and testing slurry seals and micro-surfacing is more of an art than science

Project Objective

- To update current design method and testing practices
 - Current ISSA and ASTM methods originated before polymer modified emulsion were used in slurry seals
 - Tests and design methods are empirical
 - Limited relation to performance in the field

• FHWA Pooled Fund Study conducted by Fugro with 14 participating states:

California, Delaware, Georgia, Illinois, Kansas, Maine, Michigan, Minnesota, Missouri, New Hampshire, New York, North Dakota, Texas, and Vermont.

Project Review

• PHASE 1

- Review Literature
- Survey industry
- Develop plans for Phases 2 and 3

Project Review

• PHASE 2

- Evaluate current mix design procedures
- Consider potential tests and methods
- Develop new rational mix design procedure
- Ruggedness testing
- Summary report, findings, and recommendations

Project Review

• PHASE 3

Development of guidelines Specifications Training Field trials (validation)

Preliminary Results

After reviewing current recommended laboratory test methods and design practices it was found that:

- 1. Poor repeatability
- 2. Limited relation to field performance
- 3. Important factors (temperature, humidity)
 - are not considered

Phase II Activities

A single mix design procedure will be developed for both, slurry seals and microsurfacing systems. Proposed specification:

<u>S3</u>

"Slurry Surfacing Systems"

DESIRABLE FEATURES

- Repeatable
- Relate to field performance
- Representative of field conditions (temperature, humidity)
- Mixable
- Workable

DESIRABLE FEATURES

- Performance
- Ease of use
- Cost
- Ease of implementation

Rational Mix Design Process

- Test for material properties
- Test for mixing, spreading, and setting properties
- Long-term performance tests

Experimental Mix Matrix

- •A1: George Reed, Inc. Table Mountain, Sonora, CA (ISSA Type III)
- •A2: Lopke Gravel Prod. Lounsberry Pit, Nichols, NY (ISSA Type III)
- •A3: Delta Materials, Marble Falls, TX
- •E1: SEM Materials (Koch), Tulsa, OK, Ralumac
- •E2: VSS Emultech, Polymer Modified LMCQS-1h, Sacramento, CA
- •E3: Ergon Asphalt & Materials, Waco, TX

System	Aggregate + Emulsion Combination
M1	A1+E1
M2	A1+E2
MB	A2+E1
M4	A2+E2
Mo	A3+E3

Current specifications for material testing were adopted with minor modifications to acceptance treshholds. Additional tests for some of the components of the mix were also incorporated (e.g. Methylene blue test for aggregates).

System components:

- Aggregate
- Mineral filler
- Emulsified asphalt
- Control additives
- Water

Current test for slurry seals and microsurfacing are operator dependent. To overcome this deficiency, automated tests were developed.

• Automated Mixing Test (AMT): determines mixability and workability. Records change in viscosity (torque) with time.

AMT Trace for Mix M2 (Moderate Viscosity System)

New Mix Design: Test for mixing, spreading, and setting

 Automated Cohesion Test (ACT):determines time to allow traffic. Applies torque after one hour cure to measure resistance to shear force.

Example ACT testing results

 Cohesion Abrasion Test (CAT): modified Wet Track Abrasion Test (WTAT). Incorporates wheels instead of abrasion head to measure abrasion loss and short-term stone retention.

Long term performance tests

Main properties of interest:

- Abrasion Resistance (raveling)
- Water resistance (stripping)
- Deformation resistance (rutting)

S3 specifications proposed the **CAT** to quantify abrasion and water resistance, and the current **ISSA TB 109 (Loaded Wheel Test)** for deformation resistance.

UGRO

Proposed Mix Design Flowchart

- 1. Materials selection
- 2. Create mix matrix and determine mix constructability
- 3. Determine short-term constructability properties
- 4. Determine optimum binder content
- 5. Evaluate cohesion properties at various curing conditions
- 6. Evaluate long-term properties of mixture

Strawman Specification

0		Traffic		Temperature			Humidity			
Set	Test or field Condition	Units	Hi	Med	Low	Hi	Med	Low	Hi	Normal
Time						35 C	25 C	10 C	90 %	50%
	PFS-1 (Mixing)									
	Mixing Torque - maximum	kg-cm	9	9	9	9	9	9	9	9
	Mixing time - minimum	sec.	120	120	120	120	120	120	120	120
	Spread index - maximum @ 120									
	sec.	kg-cm	12	12	12	12	12	12	12	12
	Blot test - 30 sec.	-	clear water	clear water	N/A	clear water	clear water	clear water	clear water	clear water
	Coating	-	100%	100%	95%	95%	95%	100%	100%	95%
Rapid	PFS-2 (Wet Cohesion)									
•	30 min. cohesion - minimum	kg-cm	12	12	12	12	12	12	12	12
	60 min. cohesion - minimum	kg-cm	23	20	20	20	20	20	20	20
	90 min. cohesion - minimum	kg-cm	25	25	25	25	25	25	25	25
	12 hr. cohesion - minimum	kg-cm	28	28	28	28	28	28	28	28
	PFS-3 (Abrasion Loss)		ļ							
	30 min. loss - maximum	g/m²	200	200	400	300	300	300	300	300
	1hr. loss - maximum	g/m²	100	100	300	100	200	100	100	200
	3 hr. loss - maximum	g/m²	100	100	200	100	100	100	100	100
	PFS-1 (Mixing)									
	Mixing Torque - maximum	kg-cm	9	9	9	9	9	9	9	9
	Mixing time - minimum	sec.	120	120	120	120	120	120	120	120
	Spread index - maximum @ 120									
	sec.	kg-cm	12	12	12	12	12	12	12	12
Slow	Blot test - 30 sec.	-	clear water	clear water	N/A	clear water	clear water	clear water	clear water	clear water
	Coating	-	100%	100%	95%	95%	95%	100%	100%	95%
	PFS-2 (Wet Cohesion)									
	30 min. cohesion - minimum	kg-cm	12	12	12	12	12	12	12	12
	60 min. cohesion - minimum	kg-cm	23	20	20	20	20	20	20	20
	90 min. cohesion - minimum	kg-cm	25	25	25	25	25	25	25	25
	12 hr. cohesion - minimum	kg-cm	28	28	28	28	28	28	28	28
	PFS-3 (Abrasion Loss)		ļ							
	30 min. loss - maximum	g/m²	200	200	400	300	300	300	300	300
	1hr. loss - maximum	g/m²	100	100	300	100	200	100	100	200
	3 hr. loss - maximum	g/m^2	100	100	200	100	100	100	100	100

Asphalt Emulsion Requirements

PROPERTY	Test Method	Minimum	Maximum
Viscosity, Saybolt Furol @ 77° F, Seconds	AASHTO T 59	20	100
Storage Stability test, one day, %	AASHTO T 59	-	1
Particle Charge test	AASHTO T 59	Positive	
Sieve Test, %	AASHTO T 59	-	0.1
Tests on Distillation			
Oil distillate, by volume or emulsion, % residue	AASHTO T 59	60	-
Tests on Residue			
Penetration, 77° F, 100g, 5 sec	AASHTO T 49	55	90
Ductility, 77° F 5 cm/min, cm	AASHTO T 51	70	-
Solubility in trichlorethylene, %	AASHTO T 44	97.5	
Softening Point, minimum	AASHTO T 53	135 ° F	

Aggregate Quality Requirements

Test	Test Method	Requirement
Sand Equivalent, min	AASHTO T 176	65
Los Angeles Abrasion, loss at 500 rev., max*	AASHTO T 96	35
Percentage of Crushed Particles, minimum	AASHTO T	100
Magnesium sulfate soundness, max. loss, %, 4 cycles	AASHTO T 104	20
Micro-Duval, loss, %**	AASHTO	Report

Aggreagate Gradations

Grade	US Sieve Size		US Sieve Size		Passing by Weight, %	Job Mix Formula Tolerance Limits, %+ -
Α	A ? 9.5 mm		100	5		
	#4	4.75 mm	70-90	5		
	#8	2.36 mm	45-70	5		
	#16	1.16 mm	28-50	5		
	#30	600µm	19-34	3		
	#50	330 µm	12-25	3		
	#200	75 µm	5-15	2		
В	?	9.5 mm	100	5		
	#4	4.75 mm	94-100	5		
	#8	2.36 mm	65-90	5		
	#16	1.18 mm	40-70	5		
	#30	600 µm	25-50	3		
	#50	330 µm	18-30	3		
	#200	75 μ	5-15	2		
С	?	9.5 mm	100			
	#4	4.75 mm	100	5		
	#8	2.36 mm	90-100	5		
	#16	1.16 mm	65-90	5		
	#30	600µm	40-65	5		
	#50	330 µm	25-42	4		
	#200	75 μm	10-20	2		

Work Plan and Study Approach

Phase III Activities

Phase III – Training

Training – Complete 1.5-day Training Course materials and Pre-Job Module

Training Course

- Instructor's Guide
 - Basic Information
 - General introduction
 - Set-up and wrap-up procedures
 - Annotated outline by session

Pre-Job Training Module

- "Tailgate" presentation
 - Targeted at agency and contractor personnel on the job
 - Share "must know" information
 - Pocket-size guide book for field use

Work Plan- Phase III

- Construct Pilot Projects
 - Identify Test Sections
 - Site Selection guidelines
 - Test Section Layout
 - -Construction Guidelines
 - Pre-construction
 - Construction
 - Post-Construction

Work Plan- Phase III

Identify Test Sections

Traffic	Surface Type	Climatic Region					
		Wet-Freeze	Wet-No Freeze	Dry-Freeze	Dry-No Freeze		
High	HMAC	*(1,2)	*(1,2)	*(1,2)	*(1,2)		
	PCC						
Moderate	HMAC	*(1,2)	*(1,2)	*(1,2)	*(1,2)		
	PCC						

Work Plan- Phase III

- Construction Guidelines
 - Insure proper placement
 - Observe and evaluate constructability
 - Coordinated effort between
 - Agency
 - Research Team
 - Contractor
 - Material Supplier

- Use Guidelines developed in study
- Document activities

Acceptance of Mixture

- Need for field control test
- Need for sampling and testing of completed mixture
- Automated sampling device from equipment manufactures?

GeoGauge

- Non-destructive, quick measurements of stiffness
- Can be used to measure the rate of cure in cementtreated base materials
- Produced by Humboldt

