Bridge Preservation with ECC

2010 Midwest Bridge Preservation Partnership Annual Meeting, Detroit, MI Oct. 12-14th 2010

Victor C. Li University of Michigan, Ann Arbor

UNIVERSITY OF MICHIGAN

"Bendable" Concrete (ECC)

Application as a Bridge Deck Link-slab

3

ECC Link-slab Concept

ECC Bridge Deck Link-Slab

Application in Patch Repair

Application as jointless overlay in Composite Bridge Deck

7

Crack Width Control Under Drying Shrinkage

Effective Chloride Diffusion Coefficient of Pre-cracked Specimens

AASHTO T259 Salt ponding test on preloaded beams

Corrosion Test

Self-healing Process

Potential Use of ECC for Bridge Preservation

• Patch repair

Bridge deck link slab

• Bridge deck overlay

Potential Use as Bridge Deck Overlays

Preliminary Overlay Tests

Prevention of Reflective Cracking in ECC Under Fatigue Loading

Summary & Conclusions

- ECC is designed to attain high **tensile ductility** with tight self-controlled crack width.
- **Damage tolerance** retains load carrying capacity despite microcracking.
- **Tight crack-width** maintains good transport properties and durability under typical exposure conditions.
- Damage tolerance, durability and self-healing characteristics allow ECC to approach crack-free conditions ideal for **reducing structural maintenance frequency and cost.**
- ECC has emerged in a number of full scale applications.
- ECC is potentially a good fit with bridge preservation. For **overlay**, ECC can minimize surface cracking and delamination, and eliminate reflective cracking.

Precast Construction for Highway

Precast ECC element

Highway for Life ?

MRL

Michigan Engineering

18

Link Slab Sustainability Indicators

Engineered Cementitious Composites (ECC)

- A type of High Performance Fiber Reinforced Cementitious Composite (HPFRCC)
- Mix Design

Typical Mix Design of ECC Material

Cement	Water	Sand	Fly Ash	HRWR	Fiber (%)
1.00	0.58	0.80	1.20	0.013	2.00

HRWR = High range water reducer; all ingredient proportions by weight except for fiber.

- Design Approach
 - Micromechanics based; Synergistic interactions between ingredients of fiber, matrix and fiber/matrix interface
 - No exotic ingredients; control ingredient chemical composition, geometric size and proportion holistically
 - Designed to use common construction equipment

Compressive Properties

- Similar to normal-high strength concrete
- Slightly higher compressive strain capacity (~50% increase over normal concrete)

Tensile Behavior

- High ductility (>300 times that of normal concrete)
- Damage tolerant (load capacity maintained after microcracking)
- Tight crack width (~50-80 μ m)

41-story Nabeaure Yokohama Tower

Abrasion and Wear Testing

• Michigan Department of Transportation Testing Method (MTM-111)

Durability **Corrosion and Spall Resistance**

Mortar after 95 hrs accelerated corrosion

ECC after 350 hrs accelerated corrosion

Self-Healing

Before

3 mm

Under water permeation

Under chloride exposure

Under wet/dry cycles

Durability under F-T Cycles in Presence of De-icing Salt

ASTM C 672

27

Repair/Substrate Interface Delamination

