New Generation of Sustainable Infrastructures "Current CFRP Research "

Build a structure once, the right way, with the right materials, while minimizing repair and maintenance over the lifetime of the structure – and save taxpayer money

By
Nabil F. Grace, Ph.D., P.E.
Dean & University Distinguished Professor,
College of Engineering
Lawrence Technological University, Southfield, MI

USA Bridge Inventory

As of August 14, 2007

	Category	<u>Bridge</u> :	<u>S</u>
--	-----------------	-----------------	----------

• Urban 151,102

• Rural 448,791

• Total 599,893

Structurally Deficient 72,264

Functionally Obsolete 81,257

Lawrence Tech University, Southfield, MI "Center for Innovative Materials Research (CIMR)"

Three-Span Rouge River Bridge

Bridge Street Bridge Deployment Project Consists of Two Parallel and Independent Bridges (Structures A and B).

POST-TENSIONING OF LONGITUDINAL CFCC STRANDS

Hydraulic Jack

Load cell at dead end of CFCC strand of the bridge DT-beam

Penobscot Narrows Bridge & Observatory <u>Design / Construction</u>

Carbon Fiber Composite Cable Research Project

In Observation pylon - stay 2, 10 and 17 reference strands will be replaced with carbon fiber composite cable

Design Features Expedite Project Completion

- Foundations placed on land
 - Streamlined permit process (avoid wetlands)
 - Ship impact, ice, and tidal loadings avoided
 - Construction access easier
- Incorporated CIP
 Segmental box
 girder details to
 keep casting
 operations
 repetitive

Penobscot Narrows Bridge & Observatory

2004 #1 Bridge in America

July 10, 2006 ENR Cover

Winner of 10 Design Awards including FHWA "Innovation Award"

AASHTO Bridge Model at Failure (MEDC Project)

Traditional Highway Box-Beam Bridges

Alternative solution:

➤ Corrosion-Free Decked Bulb-T beams

Traditional Highway Box-Beam Bridges

Traditional Highway Box-Beam Bridges

decked bulb T beam advantages:

- Similar structural integrity and advantages of box-beams
- Hassle-free from grouting and inspection problems
- Simpler in construction and easy to replace damaged fascia beams

Details of the Proposed Decked Bulb-T Beam

Construction Sequence of Decked Bulb-T Beam Bridges

Transverse Post-tensioning

Cross-Section of CFCC Decked Bulb T- Bridge Model

Pretensioning of CFCC Strands

Hydraulic jack

Bulkhead

CFCC Strand 1x7, 15.2mm

Decked Blub –T Beams for Bridge Model

DECKED BULB-T BRIDGE MODEL

Ultimate Load Test Setup of Control Beam

Ultimate Load Test of CFCC Control Beam

WWW.NABILGRACE.COM NGRACE@LTU.EDU