

Senior Sales Specialist Big Bore Engines

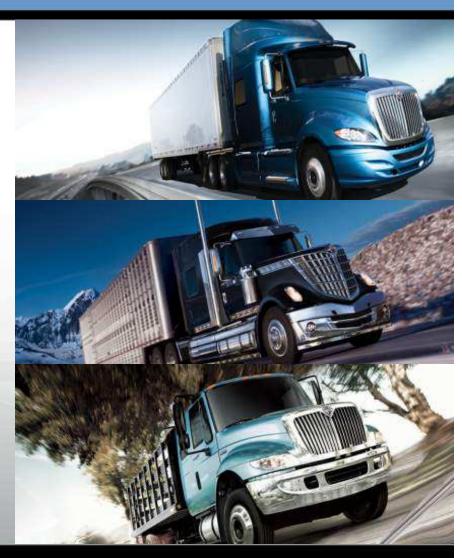
Steve Perkins

ALWAYS PERFORMING.

MaxxForce[®] is a registered trademark **charge state**, Inc.

- Agenda
 - Background of Achievement
 - Technology
 - EPA Requirements
 - Why we chose Advanced EGR

2010 AND BEYOND



MaxxForce Power for International Vehicles

GREAT PRODUCTS ONE COMMON DENOMINATOR

MaxxForce® is a registered trademark of a start of the st

ADVANCED EGR

MaxxForce[®] is a registered trademark **characteristic**, Inc.

Navistar 2010

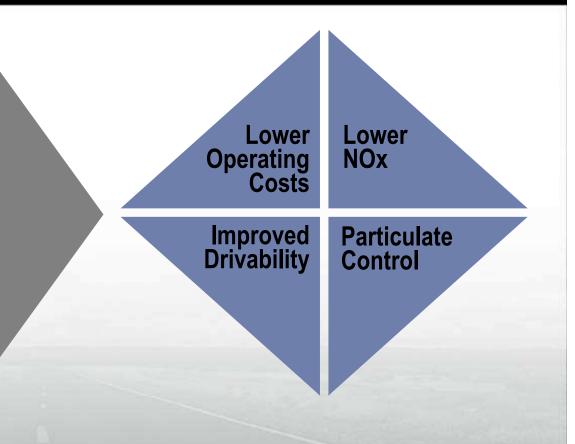
- Why isn't Navistar going with EGR only?
 What led to that decision?
- What are some of the steps that we took to be ready for 2010?
- What are long term emission strategies?

Why EGR

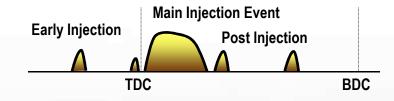
- First and foremost burden of Compliance rests with us
 - the manufacturer
- Driver interface is unchanged
- Packaging and payload superiority
- Technician requirements are unchanged
- Lower Operating Costs
- Vehicle Complexity Reduced
- Urea Requirements avoided
- Value

Why Worry About NO_x?

• NO_x is created in the cylinders by high combustion temperature

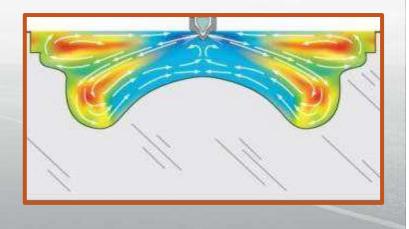

- NO_x causes ground level ozone and smog
- NO_x can be reduced by:
 - Chemical reaction in the exhaust
 - Lower combustion temperatures

ADVANCED EGR TECHNOLOGY ENABLERS


- 1) Advanced Fuel Injection Technology
- 2) Proprietary Combustion Bowl Designs
- 3) Advanced Air-Management Systems
- 4) Proprietary Electronic Calibration Strategies

ADVANCED EGR

STEP 1 Advanced Fuel Injection Technology Multiple injections per cycle Higher injection pressures Less NO_x created

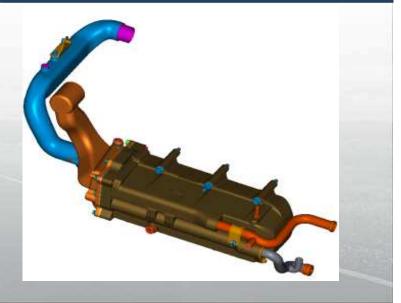


STEP 2 Proprietary Combustion Bowl Design

Finer mist

More even distribution in cylinder

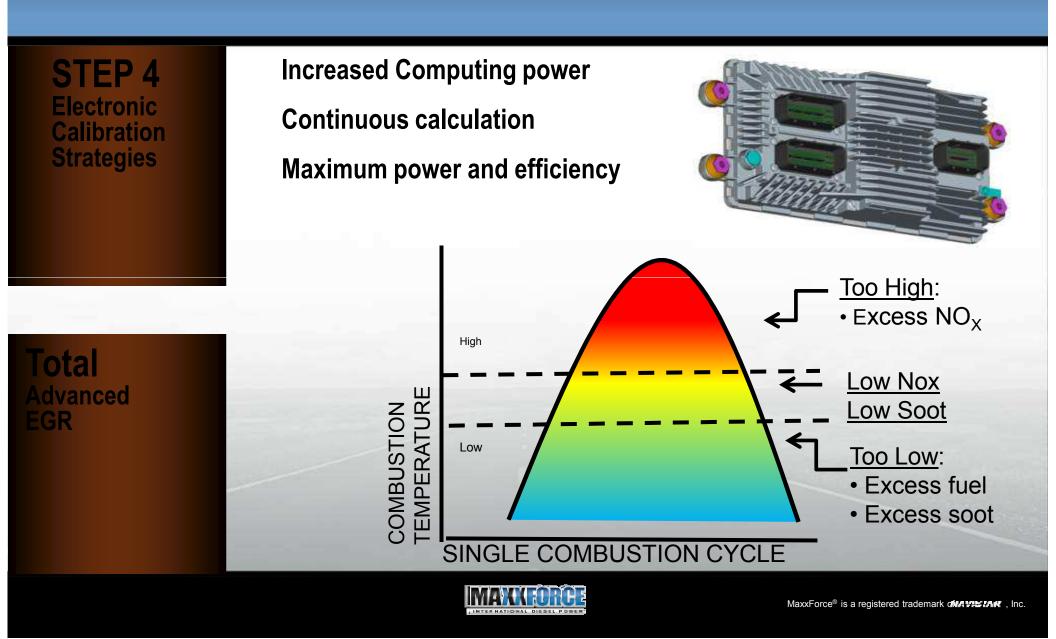
More complete burn



ADVANCED EGR

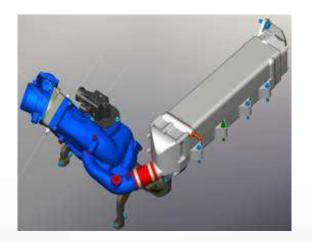
STEP 3 Advanced Air Management Dual turbochargers Interstage cooling Lower combustion temp.

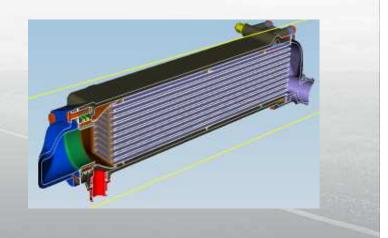
STEP 3 Exhaust Gas Recirculation More flow


Cooler temperature Lower combustion temp.

MaxxForce[®] is a registered trademark of the second secon

ADVANCED EGR




Product - Reliability

EGR Cooler / EGR Valve

Durability and Reliability

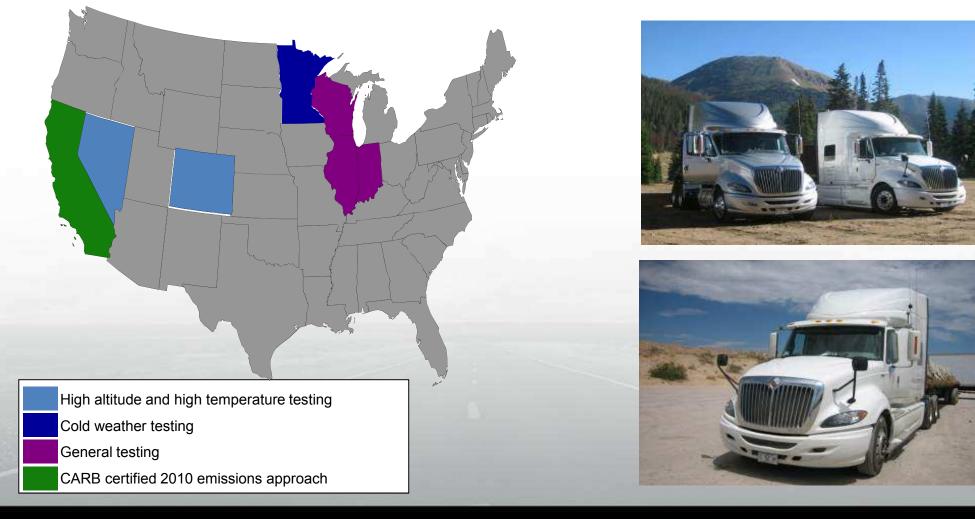
- Larger Aluminum cast housing
 - Cast design successful on MxF 11/13
- Floating core suspends internal heat exchanger
 - Improved solid mounting reduces vibration
- Single cooler reduces plumbing
 - Integral with mating surfaces
- Next generation integrated EGR valve with dual stepper motor actuation eliminates prior spring return
- Design Improvement
 - Enhanced Reliability at higher flow rates

Navistar 2010 Commitment

- Meet 2010 with minimal customer burden
- EPA / CARB compliance and certification – CARB Best Available Control Technology

2010 Alternatives for Navistar

- Run hot combustion, create NOx, reduce out of engine
 - Liquid SCR effective requires customer involvement
 - European technology
 - All 2010 SCR engines will retain EGR
 - What is the longer term future of liquid SCR with so many strong alternatives under development?
 - NOx adsorbers, Lean NOx traps do not scale
 - GE / Tenneco SCR catalyst not mature



2010 Alternatives

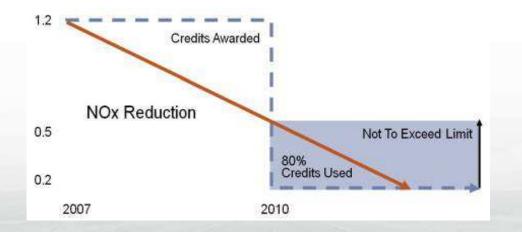
- Run cool combustion with EGR, reduce NOx
 - Best for customers
 - Doable with High Pressure Common Rail timing challenge
 - Navistar 5 million engines produced since 1995 with High Pressure Common Rail unmatched experience
 - Large investment in R&D

Tested, Proven and Delivered 100 Vehicle Fleet - 15 million test miles since early 2008

Development Issues and Solutions

- Development EGR runs engine "cold" with reduced oxygen
 - Issue: Condensation can form
 - Solution: Cycle EGR 100-130 degrees
 - Condensation effectively reduced to safe levels

Development Issues and Solutions


- Cool combustion reduces efficiency
 - Issue: Could reduce power and fuel economy
 - Issue: Could increase DPF regen, oil intervals
 - Solution: Increase fuel pressure, recalibrate
 - Restores power and efficiency to 2007 levels
 - V-8 increases in power for 2010 from 230 HP to 300 HP
 - Restores oil intervals, DPF regen to 2007 levels

Timing challenge

<u>Development Strategy</u>: mature the technology for customers

<u>Sustainability</u>: As credits deplete, increase EGR levels (to 35% range) to achieve 0.2 NOx , increase fuel pressure, recalibrate to retain and improve fuel economy and performance.

Navistar Advanced EGR – Summary

Easy for Operators

- Easy to Operate
- Maintain fuel economy
- "Business as usual" for fleet operators
 - No added hardware no space restrictions
 - Minimal added weight (~100 lbs.) for larger cooling system

Easy to Understand

- Built on mature 2007 platform
- Over 2 million Navistar EGR engines in service

Easy to Maintain

- No urea
- No technician and driver training, no increased maintenance

Easy on the Environment – Phase-in strategy = cleaner engines earlier

Questions?

Engine Sales and Marketing Steve Perkins

ALWAYS PERFORMING.

THANK YOU

