SBR and Natural Rubber Latex-Modified Emulsions for Micro Surfacing

MPPP Meeting
September 9-11, 2008
Minneapolis, MN

Chris Lubbers
BASF Corporation

Erland Lukanen, P.E.
Minnesota DOT Office of Materials
Outline

- Asphalt emulsion primer
- What are polymers?
- Polymers for micro surfacing emulsions
 - Modification of asphalt emulsions
 - Latex polymer networks
 - Impact on binder + mix properties
- MN DOT micro surfacing perspective
- SBR latex-modified TH 55 demo details
Asphalt Emulsions - Formulation

- **Components**
 - Asphalt
 - Surfactant (surface active agents, emulsifiers)
 - Water
 - Mechanical energy (colloid mill)

- **Other Ingredients**
 - Additives (calcium chloride, cutback agents, …)
 - Modifiers – *Polymers*
Asphalt Emulsions – Component Distribution

- Dispersion of asphalt in water
 - Water – continuous phase
 - Asphalt – non-continuous or dispersed phase
 - Stabilized by surfactant

- Surfactant emulsion class.
 - Cationic
 - Anionic
 - Nonionic
Asphalt Droplets

Particle Size, µm

Volume %

0.1 1 10 100
What are Polymers?

- Comprised of many small molecules
 - **Poly** = many
 - **Monomers** = small molecules or repeat units

- Monomers chemically react → larger molecules
 - Water-based polymers – latex form (SBR, NRL)

- Properties are determined by:
 - Types and sequence of monomers
 - Molecular weight
Polymer Types for Micro Surfacing

- **SBR Latex** – Micro Surfacing
- **Natural Rubber Latex** – Ralumac (Micro Surfacing)
- **Other** – Ground Tire Rubber - GTR (REAS)
Polymers for Micro Surfacing Emulsions

- **Elastomer – Styrene-Butadiene Rubber - SBR**
 - Latex form – polymer particles dispersed in water
 - Random monomer addition – typ. 75/25 Bd/styrene
 - High molecular weight – 1,000,000 g/mole
 - 13,900 Bd “mers”, 2400 styrene “mers”
 - Broad distribution – chains many different lengths
Elastomer – Polyisoprene – Natural Rubber

- Latex form – polymer particles dispersed in water
- Homopolymer of isoprene – harvested from trees
- High molecular weight – 1,000,000 g/mole
- Broad distribution – chains many different lengths

[Chemical structure of isoprene]

Isoprene
Viscoelastic Behavior
Cured Latex Modified Asphalt Emulsion

- $G^* = f(T) = \text{deform. resist.}$

- **Asphalt**
 - High G^* at low T – brittle
 - Low G^* at high T – viscous
 - $\Delta G^*(80^\circ \text{C} – 20^\circ \text{C}) = 1000x$

- **SBR Polymer**
 - Lower G^* at low T – flexible
 - Higher G^* at high T – elastic
 - $\Delta G^*(80^\circ \text{C} – 20^\circ \text{C}) = 10x$
Polymer Modification of Asphalt Emulsions

- Add latex external to asphalt
 - Methods
 - soap batching
 - co-milling – asphalt line
 - co-milling – soap line
 - Polymers – SBR, NR latex
 - Lower asphalt process T
 - No special mill, handling
- Polymer in water phase
- Continuous polymer film formation on curing
Latex Polymer-Modified Asphalt Emulsion

- **Latex Modified Emulsion**
- **Cured Bitumen Emulsion**

- Optimum for Fine Polymer Network Formation
Microsurfacing Operation

1 min < Mix Time < 3 min

Cohesion Development < 1 hr
Microsurfacing – High ADT + ESAL’s

Paved in Oct. 2001
Photo from Sept. 2003
Micro Surfacing Mix Formulation

- Blade Coating Operation
 - 2 m wide + <1 cm thick
 - 4-5 km/hour
 - Traffic within 1 hour

- Latex Polymer Binds
 - Asphalt
 - Fines to Aggregates

Latex Polymer = 3% of Asphalt (1/4 of Cement)
Micro Surfacing–Polymer Morphology Field Application

Texas State Highway 84
- Near Waco, TX
- Paved in 1998
- Samples taken in 2001
Cured Latex Polymer Network

Micro Surfacing

Latex Foam
SBR latex polymer

- 50% reduction in loss
 - one hour soak
- 67% reduction in loss
 - six day soak

- Surface of mix
 - tougher
 - more abrasion res.

- Adhesion + water resistance
 - improved

Graph showing:
- Loss (g/ft²) on the y-axis
- Unmod. and SBR on the x-axis
- Bar graph comparing 1 Hour and 6 Day soak

Legend:
- Green bar: 1 Hour
- Red bar: 6 Day

3 wt% SBR (on asphalt)
Cohesion Development – ISSA TB-139

Cohesion (kg-cm)

Unmod. SBR

3 wt% SBR (on asphalt)

30 minutes 60 minutes

30 minutes 60 minutes
SBR latex at 3% will decrease lateral disp. by ~ 90%
Microsurfacing Residue – SHRP Grade

Rutting resistance temperature, °C

Curing Time, day

Emulsion+Cement+SBR Latex
Emulsion+Cement
Emulsion Only

Phase Angle at G*sin(δ) = 1kPa, degree

30 days Cured

Emulsion only + Cement +3% Latex
Advantages of Latex Polymer Network

- Latex polymer honeycombs remain flexible
 - Absorb stresses without permanent deformation
Micro Surfacing

• Improved mix cohesion
• Reduction in abrasion loss of aggregate
• Resistance to deformation
Micro Surfacing in Minnesota History

- Intro to micro surfacing from Koch in late 1980s
- Small trial projects until 1999
- 1999 – First large contract for micro surfacing
 - Single statewide contract to demonstrate
 - rut filling
 - friction improvement
 - ride improvements
 - About 125 lane miles
Micro Surfacing in Minnesota Current Practices

- Roadways with over 10,000 AADT
- Project selection in Pavement Management System
- Much of our micro surfacing work done at night
 - Minimizes traffic disruption
 - Requires a 1000-foot night time test strip
 - To demonstrate micro surfacing mix meets our one-hour cure time requirement
Micro Surfacing in Minnesota Current Specification

- Requires natural rubber latex polymer
- Contractor provided mix design
- Ambient temperature above 50°F
- Work complete before September 15th
Micro Surfacing in Minnesota
Current Application Areas

- Pavement preservation
- Rut filling
- Centerline longitudinal joint treatment (18” wide)
- Friction improvements
- Some ride improvements
Micro Surfacing in Minnesota Performance

- Generally adds about five years to the life of our bituminous pavements (ride criteria)

- Failure modes include:
 - Debonding
 - Raveling and abrasion wear

- Is it cost effective?
 - About neutral for LCCA
SBR Latex-Modified Micro Surfacing Demo
2008 MPPP - TH 55

Minnesota DOT

TABLE I
AGGREGATE ANALYSIS
VANCE BROTHERS, INC.

<table>
<thead>
<tr>
<th>SIEVE #</th>
<th>ISSA TYPE II SPECIFICATIONS</th>
<th>% PASSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>90-100</td>
<td>96.9</td>
</tr>
<tr>
<td>8</td>
<td>65-90</td>
<td>75.6</td>
</tr>
<tr>
<td>16</td>
<td>45-70</td>
<td>53.3</td>
</tr>
<tr>
<td>30</td>
<td>30-50</td>
<td>37.5</td>
</tr>
<tr>
<td>50</td>
<td>18-30</td>
<td>24.6</td>
</tr>
<tr>
<td>100</td>
<td>10-21</td>
<td>15.8</td>
</tr>
<tr>
<td>200</td>
<td>5-15</td>
<td>10.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST</th>
<th>ISSA SPECIFICATION</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand Equivalent</td>
<td>65</td>
<td>83</td>
</tr>
</tbody>
</table>

TABLE II
MICRO-SURFACING EMULSION FORMULATION
VANCE BROTHERS, INC.

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>PERCENTAGE, BY WEIGHT EMULSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsifier</td>
<td>1.7</td>
</tr>
<tr>
<td>Latex NX 1138</td>
<td>3.5</td>
</tr>
<tr>
<td>Water</td>
<td>32.8</td>
</tr>
<tr>
<td>Hydrochloric Acid</td>
<td>to pH 2.0</td>
</tr>
<tr>
<td>Asphalt: Amoco Whiting AC-20</td>
<td>62.0</td>
</tr>
</tbody>
</table>
TABLE III
MICRO-SURFACING EMULSION TEST RESULTS
VANCE BROTHERS, INC.

<table>
<thead>
<tr>
<th>TEST PROCEDURE</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residue, %</td>
<td>65.5</td>
</tr>
<tr>
<td>Sieve, %</td>
<td>0.0105</td>
</tr>
</tbody>
</table>

TABLE IV
MICRO-SURFACING JOB MIX FORMULATION
VANCE BROTHERS, INC.

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>PERCENTAGE, ON DRY AGGREGATE BASIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I Portland Cement</td>
<td>0.25-0.75</td>
</tr>
<tr>
<td>Total Water</td>
<td>10-12</td>
</tr>
<tr>
<td>Pre-Wet Solution (4% Emulsifier in Water)</td>
<td>As Required</td>
</tr>
<tr>
<td>Emulsion</td>
<td>12-13</td>
</tr>
<tr>
<td>Aggregate:</td>
<td>100</td>
</tr>
</tbody>
</table>
TABLE V
MICRO-SURFACING MIX EVALUATION
VANCE BROTHERS, INC.

<table>
<thead>
<tr>
<th>TEST PROCEDURE</th>
<th>ISSA SPECIFICATION</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing Time, seconds</td>
<td>120 Minimum</td>
<td>120+</td>
</tr>
<tr>
<td>Wet Cohesion, kg-cm @ 30 minutes</td>
<td>12 Minimum</td>
<td>19</td>
</tr>
<tr>
<td>@ 60 minutes</td>
<td>20 Minimum or Near Spin</td>
<td>22</td>
</tr>
<tr>
<td>Wet Track Abrasion Loss, g/ft²,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-hour Soak</td>
<td>50 Maximum</td>
<td>12.8</td>
</tr>
<tr>
<td>Six-hour Soak</td>
<td>75 Maximum</td>
<td>25.5</td>
</tr>
<tr>
<td>Lateral Displacement, %</td>
<td>5% Maximum</td>
<td>5.0</td>
</tr>
<tr>
<td>Vertical Displacement, %</td>
<td>None Specified</td>
<td>16.5</td>
</tr>
<tr>
<td>Excess Asphalt by LWT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand Adhesion, g/ft²</td>
<td>50 Maximum</td>
<td>36.2</td>
</tr>
<tr>
<td>Wet Stripping, %</td>
<td>90 Minimum</td>
<td>90+</td>
</tr>
<tr>
<td>Classification Compatibility, Grade Point</td>
<td>11 Minimum</td>
<td>11+</td>
</tr>
</tbody>
</table>
Acknowledgements

- Paul Nolan – Minnesota DOT

- Vance Brothers, Inc.
 - Mark Smith
 - Marty Burrow
 - Stan Fronckewicz
 - Tim Harrawood

- Peter Montenegro – BASF Corporation